
Advances in Neural Information Processing Systems 16, 2004.

On the Dynamics of Boosting∗

Cynthia Rudin Ingrid Daubechies
Princeton University

Progr. Appl.& Comp. Math.
Fine Hall

Washington Road
Princeton, NJ 08544-1000

{crudin,ingrid}@math.princeton.edu

Robert E. Schapire
Princeton University

Department of Computer Science
35 Olden St.

Princeton, NJ 08544
schapire@cs.princeton.edu

Abstract

In order to understand AdaBoost’s dynamics, especially itsability to
maximize margins, we derive an associated simplified nonlinear iterated
map and analyze its behavior in low-dimensional cases. We find stable
cycles for these cases, which can explicitly be used to solvefor Ada-
Boost’s output. By considering AdaBoost as a dynamical system, we are
able to prove R̈atsch and Warmuth’s conjecture that AdaBoost may fail
to converge to a maximal-margin combined classifier when given a ‘non-
optimal’ weak learning algorithm. AdaBoost is known to be a coordinate
descent method, but other known algorithms that explicitlyaim to max-
imize the margin (such as AdaBoost∗ and arc-gv) are not. We consider
a differentiable function for which coordinate ascent willyield a maxi-
mum margin solution. We then make a simple approximation to derive a
new boosting algorithm whose updates are slightly more aggressive than
those of arc-gv.

1 Introduction

AdaBoost is an algorithm for constructing a “strong” classifier using only a training set and
a “weak” learning algorithm. A “weak” classifier produced bythe weak learning algorithm
has a probability of misclassification that is slightly below 50%. A “strong” classifier
has a much smaller probability of error on test data. Hence, AdaBoost “boosts” the weak
learning algorithm to achieve a stronger classifier. AdaBoost was the first practical boosting
algorithm, and due to its success, a number of similar boosting algorithms have since been
introduced (see [1] for an introduction). AdaBoost maintains a distribution (set of weights)
over the training examples, and requests a weak classifier from the weak learning algorithm
at each iteration. Training examples that were misclassified by the weak classifier at the
current iteration then receive higher weights at the following iteration. The end result is a
final combined classifier, given by a thresholded linear combination of the weak classifiers.

Often, AdaBoost does not empirically seem to suffer badly from overfitting, even after
a large number of iterations. This lack of overfitting has been attributed to AdaBoost’s

∗This research was partially supported by NSF Grants IIS-0325500, CCR-0325463, ANI-
0085984 and AFOSR Grant F49620-01-1-0099.

ability to generate a large margin, leading to a better guarantee on the generalization per-
formance. When it is possible to achieve a positive margin, AdaBoost has been shown to
approximatelymaximize the margin [2]. In particular, it is known that AdaBoost achieves a
margin of at least12ρ, whereρ is the largest margin that can possibly be attained by a com-
bined classifier (other bounds appear in [3]). Many of the subsequent boosting algorithms
that have emerged (such as AdaBoost∗ [4], and arc-gv [5]) have the same main outline as
AdaBoost but attempt more explicitly to maximize the marginat the expense of lowering
the convergence rate; the trick seems to be to design an update for the combined classifier
that maximizes the margin, has a fast rate of convergence, and is robust.

For all the extensive theoretical and empirical study of AdaBoost, it is still unknown if
AdaBoost achieves a maximal margin solution, and thus the best upper bound on the prob-
ability of error (for margin-based bounds). While the limiting dynamics of the linearly
inseparable case (i.e.,ρ = 0) are fully understood [6], other basic questions about the dy-
namics of AdaBoost in the more common caseρ > 0 are unknown. For instance, we do
not know, in the limit of a large number of rounds, if AdaBoosteventually cycles among
the base classifiers, or if its behavior is more chaotic.

In this paper, we study the dynamics of AdaBoost. First we simplify the algorithm to re-
veal a nonlinear iterated map for AdaBoost’s weight vector.This iterated map gives a direct
relation between the weights at timet and the weights at timet + 1, including renormal-
ization, thus providing a much more concise mapping than theoriginal algorithm. We then
provide a specific set of examples in which trajectories of this iterated map converge to a
limit cycle, allowing us to calculate AdaBoost’s output vector directly.

There are two interesting cases governing the dynamics: thecase where the optimal weak
classifiers are chosen at each iteration (the ‘optimal’ case), and the case where permissible
non-optimal weak classifiers may be chosen (the ‘non-optimal’ case). In the optimal case,
the weak learning algorithm is required to choose a weak classifier which has the largest
edge at every iteration. In the non-optimal case, the weak learning algorithm may choose
any weak classifier as long as its edge exceedsρ, the maximum margin achievable by a
combined classifier. This is a natural notion of non-optimality for boosting; thus it provides
a natural sense in which to measure robustness.

Based on large scale experiments and a gap in theoretical bounds, R̈atsch and Warmuth [3]
conjectured that AdaBoost does not necessarily converge toa maximum margin classifier
in the non-optimal case, i.e., that AdaBoost is not robust inthis sense. In practice, the weak
classifiers are generated by CART or another heuristic weak learning algorithm, implying
that the choice need not always be optimal. In Section 3, we show this conjecture to be true
using a low-dimensional example. Thus, our low-dimensional study provides insight into
AdaBoost’s large scale dynamical behavior.

AdaBoost, as shown by Breiman [5] and others, is actually a coordinate descent algo-
rithm on a particular exponential loss function. However, minimizing this function in other
ways does not necessarily achieve large margins; the process of coordinate descent must be
somehow responsible. In Section 4, we introduce a differentiable function that can be max-
imized to achieve maximal margins; performing coordinate ascent on this function yields
a new boosting algorithm that directly maximizes margins. This new algorithm and Ada-
Boost use the same formula to choose a direction of ascent/descent at each iteration; thus
AdaBoost chooses the optimal direction for this new setting. We approximate the update
rule for coordinate ascent on this function and derive an algorithm with updates that are
slightly more aggressive than those of arc-gv.

We proceed as follows: in Section 2 we introduce some notation and state the AdaBoost
algorithm. Then we decouple the dynamics for AdaBoost in thebinary case to reveal a
nonlinear iterated map. In Section 3, we analyze these dynamics for a simple case: the case
where each hypothesis has one misclassified point. In a3 × 3 example, we find 2 stable

cycles. We use these cycles to show that AdaBoost produces a maximal margin solution in
the optimal case; this result generalizes tom×m. Then, we produce the example promised
above to show that AdaBoost does not necessarily converge toa maximal margin solution
in the non-optimal case. In Section 4 we introduce a differentiable function that can be
used to maximize the margin via coordinate ascent, and then approximate the coordinate
ascent update step to derive a new algorithm.

2 Simplified Dynamics of AdaBoost

The training set consists of{(xi, yi)}i=1..m, where each example(xi, yi) ∈ X × {−1, 1}.
Denote bydt ∈ Rm the distribution (weights) over the training examples at iterationt,
expressed as a column vector. (Denoted

T
t as its transpose.) Denote byn the total number

of classifiers that can be produced by the weak learning algorithm. Since our classifiers are
binary,n is finite (at most2m), but may be very large. The weak classifiers are denoted
h1, ..., hn, with hj : X → {1,−1}; we assume that for everyhj on this list,−hj also
appears. We construct a matrixM so thatMij = yihj(xi), i.e., Mij = +1 if training
examplei is classified correctly by hypothesishj , and−1 otherwise. The (unnormalized)
coefficient of classifierhj for the final combined hypothesis is denotedλj , so that the final
combined hypothesis isfAda(x) =

∑n
j=1(λj/‖λ‖1)hj(x) where‖λ‖1 =

∑n
j=1 λj . (In

this paper, eitherhj or -hj remains unused.) The simplex ofn-dimensional vectors with
positive entries that sum to 1 will be denoted∆n. The margin of training examplei is
defined byyifAda(xi), or equivalently(Mλ)i/‖λ‖1, and theedgeof hypothesisj with
respect to the training data (weighted byd) is (dT M)j , or 1 − 2×(probability of error of
hj on the training set weighted byd). Our goal is to find a normalized vectorλ̃ ∈ ∆n that
maximizes mini(M λ̃)i. We call this minimum margin over training examples themargin
of classifierλ. Here is the AdaBoost algorithm and our reduction to an iterated map.

AdaBoost(‘optimal’ case):

1. Input: Matrix M, Number of iterationstmax

2. Initialize: λ1,j = 0 for j = 1, ..., n

3. Loop for t = 1, ..., tmax

(a) dt,i = e(−Mλt)i/
∑m

i=1 e(−Mλt)i for i = 1, ...,m

(b) jt = argmaxj(d
T
t M)j

(c) rt = (dT
t M)jt

(d) αt = 1
2 ln

(
1+rt

1−rt

)

(e) λt+1 = λt + αtejt
, whereejt

is 1 in positionjt and 0 elsewhere.

4. Output: λcombined,j = λtmax+1,j/‖λtmax+1‖1

Thus at each iteration, the distributiondt is computed (Step 3a), classifierjt with maximum
edge is selected (Step 3b), and the weight of that classifier is updated (Step 3c, 3d, 3e).
(Note thatwlog one can omit fromM all the unused columns.)

AdaBoost can be reduced to the following iterated map for thedt’s. This map gives a
direct relationship betweendt anddt+1, taking the normalization of Step 3a into account
automatically. Initialized1,i = 1/m for i = 1, ...,m as in the first iteration of AdaBoost.

Reduced Iterated Map:

1. jt = argmaxj(d
T
t M)j

2. rt = (dT
t M)jt

3. dt+1,i =
dt,i

1+Mijt
rt

for i = 1, ...,m

To derive this map, consider the iteration defined by AdaBoost and reduce as follows.

dt+1,i =
e−(Mλt)ie−(Mijt

αt)

∑m
i=1 e−(Mλt)i e−(Mijt

αt)
whereαt =

1

2
ln

(
1 + rt

1 − rt

)
, so

e−(Mijt
αt) =

(
1 − rt

1 + rt

) 1
2
Mijt

=

(
1 − Mijt

rt

1 + Mijt
rt

) 1
2

, thus

dt+1,i =
dt,i

∑m
i=1 dt,i

(
1−Mijt

rt

1+Mijt
rt

) 1
2

(
1+Mijt

rt

1−Mijt
rt

) 1
2

.

Defined+ =
∑

{i:Mijt
=1} dt,i andd− = 1 − d+. Thus,d+ = 1+rt

2 andd− = 1−rt

2 . For

eachi such thatMijt
= 1, we find:

dt+1,i =
dt,i

d+ + d−
(

1+rt

1−rt

) =
dt,i

1 + rt

Likewise, for eachi such thatMijt
= −1, we find dt+1,i =

dt,i

1−rt
. Our reduction is

complete. To check that
∑m

i=1 dt+1,i = 1, we see
∑m

i=1 dt+1,i = 1
1+rt

d+ + 1
1−rt

d− =
d+

2d+
+ d−

2d−

= 1.

3 The Dynamics of Low-Dimensional AdaBoost

First we will introduce a simple 3×3 input matrix and analyze the convergence of AdaBoost
in the optimal case. Then we will consider a larger matrix andshow that AdaBoost fails to
converge to a maximum margin solution in the non-optimal case.

Consider the following input matrixM =

(
−1 1 1
1 −1 1
1 1 −1

)
corresponding to the case of

three training examples, where each weak classifier misclassifies one example. (We could
add additional hypotheses toM , but these would never be chosen by AdaBoost.) The max-
imum value of the margin forM is 1/3. How will AdaBoost achieve this result? We are in
the optimal case, wherejt = argmaxj(d

T
t M)j . Consider the dynamical system on the sim-

plex
∑3

i=1 dt,i = 1, dt,i > 0 ∀i defined by our reduced map above. In the triangular region
with vertices(0, 0, 1), (1/3, 1/3, 1/3), (0, 1, 0), jt will be 1. Similarly, we have regions for
jt = 2 andjt = 3 (see Figure 1(a)). Sincedt+1 will always satisfy(dT

t+1M)jt
= 0, the

dynamics are restricted to the edges of a triangle with vertices(0, 1
2 , 1

2), (1
2 , 0, 1

2), (1
2 , 1

2 , 0)
after the first iteration (see Figure 1(b)).

first component of d_t

se
co

nd
 c

om
po

ne
nt

 o
f d

_t

1/3

1/3

1

1

j =3j =1

j =2

t t

t

first component of d_t

se
co

nd
 c

om
po

ne
nt

 o
f d

_t

1

1

1/2

1/2

(d M) =0

(d M) =0

(d M) =0

T

T

T

1

2

3

Figure 1: (a-Left) Regions ofdt-space where classifiersjt = 1, 2, 3 will respectively be selected.
(b-Right) All weight vectorsd2, ...,dtmax are restricted to lie on the edges of the inner triangle.

(0,.5,.5) (.5,.5,0) (.5,.0,.5) (0,.5,.5)
(0,.5,.5)

(.5,.5,0)

(.5,.0,.5)

(0,.5,.5)

position along triangle
po

si
tio

n
al

on
g

tr
ia

ng
le

(0,.5,.5) (.5,.5,0) (.5,.0,.5) (0,.5,.5)
(0,.5,.5)

(.5,.5,0)

(.5,0,.5)

(0,.5,.5)

position along triangle

po
si

tio
n

al
on

g
tr

ia
ng

le

0.15 0.55
0.15

0.6

first component of weight vector

se
co

nd
 c

om
po

ne
nt

 o
f w

ei
gh

t v
ec

to
r

0 0.5
0

0.5

first component of weight vector

se
co

nd
 c

om
po

ne
nt

 o
f w

ei
gh

t v
ec

to
r

Figure 2:(a-Upper Left) The iterated map on the unfolded triangle. Both axes givecoordinates on
the edges of the inner triangle in Figure 1(b). The plot shows wheredt+1 will be, givendt. (b-Upper
Right) The map from (a) iterated twice, showing wheredt+3 will be, givendt. There are 6 stable
fixed points, 3 for each cycle. (c-Lower Left) 50 timesteps of AdaBoost showing convergence of
dt’s to a cycle. Small rings indicate earlier timesteps of AdaBoost, while largerrings indicate later
timesteps. There are many concentric rings at positionsd

(1)
cyc, d(2)

cyc, andd
(3)
cyc. (d-Lower Right) 500

timesteps of AdaBoost on a random 11x21 matrix. The axes aredt,1 vsdt,2.

On this reduced 1-dimensional phase space, the iterated maphas no stable fixed points or
orbits of length 2. However, consider the following periodic orbit of length 3:
d

(1)T
cyc = (3−

√
5

4 ,
√

5−1
4 , 1

2), d
(2)T
cyc = (1

2 , 3−
√

5
4 ,

√
5−1
4), d

(3)T
cyc = (

√
5−1
4 , 1

2 , 3−
√

5
4). This

is clearly a cycle, since starting fromd(1)
cyc, AdaBoost will choosejt = 1. Thenr1 =

(d
(1)T
cyc M)1 = (

√
5 − 1)/2. Now, computingd(1)

cyc,i/(1 + Mi,1r1) for eachi yieldsd
(2)
cyc.

In this way, AdaBoost will cycle between hypothesesj = 1, 2, 3, 1, 2, 3, etc. There is
in fact another 3-cycle,d(1)T

cyc′ = (3−
√

5
4 , 1

2 ,
√

5−1
4), d

(2)T
cyc′ = (1

2 ,
√

5−1
4 , 3−

√
5

4), d
(3)T
cyc′ =

(
√

5−1
4 , 3−

√
5

4 , 1
2). To find these cycles, we hypothesized only that a cycle of length 3 exists,

visiting each hypothesis in turn, and used the reduced equations from Section 2 to solve for
the cycle coordinates.

We give the following outline of the proof for global stability: This map is a contrac-
tion, so any small perturbation from the cycle will diminish, yielding local stability of
the cycles. One only needs to consider the one-dimensional map defined on the un-
folded triangle, since within one iteration every trajectory lands on the triangle. This
map and its iterates are piecewise continuous and monotonicin each piece, so one can
find exactly where each interval will be mapped (see Figure 2(a)). Consider the sec-
ond iteration of this map (Figure 2(b)). One can break the unfolded triangle into in-
tervals and find the region of attraction of each fixed cycle; in fact the whole trian-
gle is the union of both regions of attraction. The convergence to one of these two 3-
cycles is very fast; Figure 2(b) shows that the absolute slope of the second iterated map
at the fixed points is much less than 1. The combined classifierAdaBoost will output
is: λcombined = ((d

(1)T
cyc M)1, (d

(2)T
cyc M)2, (d

(3)T
cyc M)3)/normaliz.= (1/3, 1/3/1/3), and

since mini(Mλcombined)i = 1/3 AdaBoost produces a maximal margin solution.

This3 × 3 case can be generalized tom classifiers, each having one misclassified training
example; in this case there will be periodic cycles of lengthm, and the contraction will
also persist (the cycles will be stable). We note that for every low-dimensional case we
tried, periodic cycles of larger lengths seem to exist (suchas in Figure 2(d)), but that the
contraction at each iteration does not, so it is harder to show stability.

Now, we give an example to show that non-optimal AdaBoost does not necessarily con-
verge to a maximal margin solution. Consider the following input matrix (again, omitting

unused columns):M =

(
−1 1 1 1 −1
1 −1 1 1 −1
1 1 −1 1 1
1 1 1 −1 1

)
. For this matrix, the maximal mar-

gin ρ is 1/2. In the optimal case, AdaBoost will produce this valueby cycling among the
first four columns ofM . Recall that in the non-optimal casejt ∈ {j : (dT

t M)j ≥ ρ}.

Consider the following initial condition for the dynamics:d
T
1 = (3−

√
5

8 , 3−
√

5
8 , 1

2 ,
√

5−1
4).

Since(dT
1 M)5 > ρ, we are justified in choosingj1 = 5, although here it is not the optimal

choice. Another iteration yieldsdT
2 = (1

4 , 1
4 ,

√
5−1
4 , 3−

√
5

4), satisfying(dT
1 M)4 > ρ for

which we choosej2 = 4. At the third iteration, we choosej3 = 3, and at the fourth iteration
we findd4 = d1. This cycle is the same cycle as in our previous example (although there
is one extra dimension). There is actually a whole manifold of 3-cycles in this non-optimal

case, sincẽd1
T

:= (ǫ, 3−
√

5
4 − ǫ, 1

2 ,
√

5−1
4) lies on a cycle for anyǫ, 0 ≤ ǫ ≤ 3−

√
5

4 . In any
case, the value of the margin produced by this cycle is 1/3, not 1/2.

We have thus established that AdaBoost is not robust in the sense we described; if the
weak learner is not required to choose the optimal hypothesis at each iteration, but is only
required to choose a sufficiently good weak classifierjt ∈ {j : (dT

t M)j ≥ ρ}, then a
maximum margin solution will not necessarily be attained. In practice, it may be possible
for AdaBoost to converge to a maximum margin solution when hypotheses are chosen to be
only slightly non-optimal; however the notion of non-optimal we are using is a very natural
notion, and we have shown that AdaBoost may not converge toρ here. Note that for some
matricesM , a maximum margin solution may still be attained in the non-optimal case (for
example the simple 3×3 matrix we analyzed above), but it is not attained in generalas
shown by our example. We are not saying that the only way for AdaBoost to converge to
a non-optimal solution is to fall into the wrong cycle; theremay be many other non-cyclic
ways for the algorithm to fail to converge to a maximum marginsolution. Also note that
for the other algorithms mentioned in Section 1 and for the new algorithms in Section 4,
there are fixed points rather than periodic orbits.

4 Coordinate Ascent for Maximum Margins

AdaBoost can be interpreted as an algorithm based on coordinate descent. There are other
algorithms such as AdaBoost∗ and arc-gv that attempt to maximize the margin explicitly,
but these are not based on coordinate descent. We now suggesta boosting algorithm that
aims to maximize the margin explicitly (like arc-gv and AdaBoost∗) yet is based on co-
ordinate ascent. An important note is that AdaBoost and our new algorithm choose the
direction of descent/ascent (value ofjt) using the same formula,jt = argmaxj(d

T
t M)j .

This lends further credence to the conjecture that AdaBoostmaximizes the margin in the
optimal case, since the direction AdaBoost chooses is the same direction one would choose
to maximize the margin directly via coordinate ascent.

The function that AdaBoost minimizes via coordinate descent is F (λ) =
∑m

i=1 e−(Mλ)i .
Consider anyλ such that(Mλ)i > 0 ∀i. Thenlima→∞ aλ will minimize F , yet the origi-
nal normalizedλ might not yield a maximum margin. So it must be theprocessof coordi-
nate descent which awards AdaBoost its ability to increase margins, not simply AdaBoost’s
ability to minimizeF . Now consider a different function (which bears a resemblance to an

ǫ-Boosting objective in [7]):

G(λ) = − 1

‖λ‖1
lnF (λ) = − 1

‖λ‖1
ln

(
m∑

i=1

e−(Mλ)i

)
where‖λ‖1 :=

n∑

j=1

λj .

It can be verified thatG has many nice properties, e.g.,G is a concave function for each
fixed value of‖λ‖1, whose maximum only occurs in the limit as‖λ‖1 → ∞, and more
importantly, as‖λ‖1 → ∞ we haveG(λ) → µ(λ), whereµ(λ) = (mini(Mλ)i)/‖λ‖1,
the margin ofλ. That is,

me−µ(λ)‖λ‖1 ≥ ∑m
i=1 e−(Mλ)i > e−µ(λ)‖λ‖1 (1)

−(lnm)/‖λ‖1 + µ(λ) ≤ G(λ) < µ(λ) (2)

For (1), the first inequality becomes equality only when allm examples achieve the same
minimal margin, and the second inequality holds since we took only one term. Rather than
performing coordinate descent onF as in AdaBoost, let us perform coordinate ascent on
G. The choice of directionjt at iterationt is:

argmax
j

dG(λt + αej)

dα

∣∣∣
α=0

= argmax
j

[∑m
i=1 e−(Mλt)iMij

F (λt)‖λt‖1

]
+

1

‖λt‖2
1

ln(F (λt)).

Of these two terms, the second term does not depend onj, and the first term is proportional
to (dT

t M)j . Thus the same direction will be chosen here as for AdaBoost.

Now consider the distance to travel along this direction. Ideally, we would like to maximize
G(λt + αejt

) with respect toα, i.e., we would like:

0 =
dG(λt + αejt

)

dα
‖λt+1‖1 =

∑m
i=1 e−(Mλt)ie−Mijt

αMijt

F (λt + αejt
)

− G(λt + αejt
)

There is not an analytical solution forα, but maximization ofG(λt+αejt
) is 1-dimensional

so it can be performed quickly. An approximate coordinate ascent algorithm which avoids
this line search is the following approximation to this maximization problem:

0 ≈
∑m

i=1 e−(Mλt)ie−Mijt
αMijt

F (λt + αejt
)

− G(λt).

We can solve forαt analytically:

αt =
1

2
ln

(
1 + rt

1 − rt

)
− 1

2
ln

(
1 + gt

1 − gt

)
, wheregt = max{0, G(λt)}. (3)

Consider some properties of this iteration scheme. The update forαt is strictly positive (in
the case of positive margins) due to the Von Neumann min-max theorem and equation (2),
that is:rt ≥ ρ = mind∈∆m

maxj (dT M)j = max̃
λ∈∆n

mini (M λ̃)i ≥ mini (Mλt)i/‖λt‖1

> G(λt), and thusαt > 0 ∀t. We have preliminary proofs that the value ofG increases
at each iteration of our approximate coordinate ascent algorithm, and that our algorithms
converge to a maximum margin solution, even in the non-optimal case.

Our new update (3) is less aggressive than AdaBoost’s, but slightly more aggressive than
arc-gv’s. The other algorithm we mention, AdaBoost∗, has a different sort of update. It
converges to a combined classifier attaining a margin insidethe interval[ρ − ν, ρ] within
2(log2 m)/ν2 steps, but does not guarantee asymptotic convergence toρ for a fixed ν.
There are many other boosting algorithms, but some of them require minimization over
non-convex functions; here, we choose to compare with the simple updates of AdaBoost
(due to its fast convergence rate), AdaBoost∗, and arc-gv. AdaBoost, arc-gv, and our
algorithm have initially large updates, based on a conservative estimate of the margin.
AdaBoost∗’s updates are initially small based on an estimate of the edge.

0 20 150 1100
0.4

0.5

0.65

Iterations

M
ar

gi
n

AdaBoost*

AdaBoost

arc−gv, approximate
coord ascent,
and coord ascent

arc−gv

AdaBoost

approximate
coord. ascent
and coord.
ascent

90 400 1800 10000
0.1

0.13

0.16

Iterations

M
ar

gi
n AdaBoost

approximate
coordinate
ascent arc−gv

Figure 3: (a-Left) Performance of all algorithms in the optimal case on a random11 × 21 input
matrix (b-Right) AdaBoost, arc-gv, and approximate coordinate ascent on synthetic data.

Figure 3(a) shows the performance of AdaBoost, arc-gv, AdaBoost∗ (parameterν set to
.001), approximate coordinate ascent, and coordinate ascent onG (with a line search for
αt at every iteration) on a reduced randomly generated11× 21 matrix, in the optimal case.
AdaBoost settles into a cycle (as shown in Figure2(d)), so its updates remain consistently
large, causing‖λt‖1 to grow faster, thus converge faster with respect toG. The values
of rt in the cycle happen to produce an optimal margin solution, soAdaBoost quickly
converges to this solution. The approximate coordinate ascent algorithm has slightly less
aggressive updates than AdaBoost, and is very closely aligned with coordinate ascent; arc-
gv is slower. AdaBoost∗ has a more methodical convergence rate; convergence is initially
slower but speeds up later. Artificial test data for Figure 3(b) was designed as follows:
50 example points were constructed randomly such that eachxi lies on a corner of the
hypercube{−1, 1}100. We setyi = sign(

∑11
k=1 xi(k)), wherexi(k) indicates thekth

component ofxi. Thejth weak learner ishj(x) = x(j), thusMij = yixi(j). As expected,
the convergence rate of approximate coordinate ascent falls between AdaBoost and arc-gv.

5 Conclusions

We have used the nonlinear iterated map defined by AdaBoost tounderstand its update rule
in low-dimensional cases and uncover cyclic dynamics. We produced an example to show
that AdaBoost does not necessarily maximize the margin in the non-optimal case. Then, we
introduced a coordinate ascent algorithm and an approximate coordinate ascent algorithm
that aim to maximize the margin directly. Here, the direction of ascent agrees with the
direction chosen by AdaBoost and other algorithms. It is an open problem to understand
these dynamics in other cases.

References

[1] Robert E. Schapire. A brief introduction to boosting. InProceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence, 1999.

[2] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods.The Annals of Statistics, 26(5):1651–1686,
October 1998.

[3] Gunnar R̈atsch and Manfred Warmuth. Maximizing the margin with boosting. InProceedings
of the 15th Annual Conference on Computational Learning Theory, pages 334–350, 2002.

[4] Gunnar R̈atsch and Manfred Warmuth. Efficient margin maximizing with boosting.Journal of
Machine Learning Research, submitted 2002.

[5] Leo Breiman. Prediction games and arcing classifiers.Neural Computation, 11(7):1493–1517,
1999.

[6] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, AdaBoost and
Bregman distances.Machine Learning, 48(1/2/3), 2002.

[7] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a maximum margin
classifier. Technical report, Department of Statistics, Stanford University, 2003.

