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Abstract

In order to understand AdaBoost's dynamics, especiallyaliiity to
maximize margins, we derive an associated simplified nealiterated
map and analyze its behavior in low-dimensional cases. Vdestiable
cycles for these cases, which can explicitly be used to soivéda-
Boost's output. By considering AdaBoost as a dynamicalesyistve are
able to prove Rtsch and Warmuth’s conjecture that AdaBoost may fail
to converge to a maximal-margin combined classifier whearga/‘non-
optimal’ weak learning algorithm. AdaBoost is known to berarinate
descent method, but other known algorithms that explieithy to max-
imize the margin (such as AdaBobstnd arc-gv) are not. We consider
a differentiable function for which coordinate ascent wikld a maxi-
mum margin solution. We then make a simple approximatioretive a
new boosting algorithm whose updates are slightly moreesgire than
those of arc-gv.

1 Introduction

AdaBoost is an algorithm for constructing a “strong” cléissiusing only a training set and
a “weak” learning algorithm. A “weak” classifier produced tme weak learning algorithm
has a probability of misclassification that is slightly bel60%. A “strong” classifier
has a much smaller probability of error on test data. HenciaBdost “boosts” the weak
learning algorithm to achieve a stronger classifier. AdaBBa@s the first practical boosting
algorithm, and due to its success, a number of similar bogstigorithms have since been
introduced (see [1] for an introduction). AdaBoost mainsea distribution (set of weights)
over the training examples, and requests a weak classiiartfre weak learning algorithm
at each iteration. Training examples that were misclassbiethe weak classifier at the
current iteration then receive higher weights at the follgpiteration. The end result is a
final combined classifier, given by a thresholded linear doatibn of the weak classifiers.

Often, AdaBoost does not empirically seem to suffer badiynfroverfitting, even after
a large number of iterations. This lack of overfitting hasrba#ributed to AdaBoost’s
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ability to generate a large margin, leading to a better qutasaon the generalization per-
formance. When it is possible to achieve a positive margimBabst has been shown to
approximatelymaximize the margin [2]. In particular, it is known that Adadst achieves a
margin of at Ieasgp, wherep is the largest margin that can possibly be attained by a com-
bined classifier (other bounds appear in [3]). Many of thessghent boosting algorithms
that have emerged (such as AdaBddd{, and arc-gv [5]) have the same main outline as
AdaBoost but attempt more explicitly to maximize the margirthe expense of lowering
the convergence rate; the trick seems to be to design anasfiddhe combined classifier
that maximizes the margin, has a fast rate of convergendasanbust.

For all the extensive theoretical and empirical study of Balast, it is still unknown if
AdaBoost achieves a maximal margin solution, and thus teeupper bound on the prob-
ability of error (for margin-based bounds). While the limg@i dynamics of the linearly
inseparable case (i.e2,= 0) are fully understood [6], other basic questions about the d
namics of AdaBoost in the more common case 0 are unknown. For instance, we do
not know, in the limit of a large number of rounds, if AdaBoestntually cycles among
the base classifiers, or if its behavior is more chaotic.

In this paper, we study the dynamics of AdaBoost. First wepifgnthe algorithm to re-
veal a nonlinear iterated map for AdaBoost’s weight veclbis iterated map gives a direct
relation between the weights at timend the weights at time+ 1, including renormal-
ization, thus providing a much more concise mapping thamtiggnal algorithm. We then
provide a specific set of examples in which trajectories of iterated map converge to a
limit cycle, allowing us to calculate AdaBoost’s output tacdirectly.

There are two interesting cases governing the dynamicabe where the optimal weak
classifiers are chosen at each iteration (the ‘optimal’ ;@s&l the case where permissible
non-optimal weak classifiers may be chosen (the ‘non-ofiticage). In the optimal case,
the weak learning algorithm is required to choose a wealsiflaswhich has the largest
edge at every iteration. In the non-optimal case, the weaieg algorithm may choose
any weak classifier as long as its edge excgedhe maximum margin achievable by a
combined classifier. This is a natural notion of non-optitgdibr boosting; thus it provides
a natural sense in which to measure robustness.

Based on large scale experiments and a gap in theoreticatibpBtsch and Warmuth [3]
conjectured that AdaBoost does not necessarily convergenaximum margin classifier
in the non-optimal case, i.e., that AdaBoost is not robusitimsense. In practice, the weak
classifiers are generated by CART or another heuristic westing algorithm, implying
that the choice need not always be optimal. In Section 3, we $his conjecture to be true
using a low-dimensional example. Thus, our low-dimendishady provides insight into
AdaBoost’s large scale dynamical behavior.

AdaBoost, as shown by Breiman [5] and others, is actually @dinate descent algo-
rithm on a particular exponential loss function. Howevenimizing this function in other
ways does not necessarily achieve large margins; the grofesordinate descent must be
somehow responsible. In Section 4, we introduce a diffeable function that can be max-
imized to achieve maximal margins; performing coordinateeat on this function yields
a new boosting algorithm that directly maximizes marginkisThew algorithm and Ada-
Boost use the same formula to choose a direction of ascenédeat each iteration; thus
AdaBoost chooses the optimal direction for this new settMg approximate the update
rule for coordinate ascent on this function and derive aorélym with updates that are
slightly more aggressive than those of arc-gv.

We proceed as follows: in Section 2 we introduce some naotatial state the AdaBoost
algorithm. Then we decouple the dynamics for AdaBoost inkimary case to reveal a
nonlinear iterated map. In Section 3, we analyze these digsdor a simple case: the case
where each hypothesis has one misclassified point. 3irxe example, we find 2 stable



cycles. We use these cycles to show that AdaBoost producesianad margin solution in
the optimal case; this result generalizegts m. Then, we produce the example promised
above to show that AdaBoost does not necessarily convergenaximal margin solution
in the non-optimal case. In Section 4 we introduce a difféadihe function that can be
used to maximize the margin via coordinate ascent, and thprogimate the coordinate
ascent update step to derive a new algorithm.

2 Simplified Dynamics of AdaBoost

The training set consists ¢fx;, y;) }i=1..m, where each example;, y;) € X x {-1,1}.
Denote byd; € R™ the distribution (weights) over the training examples atationt,
expressed as a column vector. (Dendfeas its transpose.) Denote hythe total number
of classifiers that can be produced by the weak learning itthgor Since our classifiers are
binary, n is finite (at mos22™), but may be very large. The weak classifiers are denoted
hi,...;hyn, With h; = X — {1,—1}; we assume that for every; on this list,—h; also
appears. We construct a matiik so thatM;; = y;h;(x;), i.e., M;; = +1 if training
examplei is classified correctly by hypothesig, and—1 otherwise. The (unnormalized)
coefficient of classifief; for the final combined hypothesis is denoted so that the final
combined hypothesis ifada(x) = 27—, (A;/[IAll1)h;(x) where[[A]l, = 377, A;. (In
this paper, eitheh; or -h; remains unused.) The simplex @fdimensional vectors with
positive entries that sum to 1 will be denotéd,. The margin of training examplé is
defined byy; fa4q(x;), or equivalently(MX);/||A]|1, and theedgeof hypothesis;j with
respect to the training data (weighted dyis (d”M);, or 1 — 2x (probability of error of
h; on the training set weighted k). Our goal is to find a normalized vectare A, that

maximizes mip(M X);. We call this minimum margin over training examples thargin
of classifierA. Here is the AdaBoost algorithm and our reduction to antiéeranap.

AdaBoost(‘optimal’ case):
1. Input: Matrix M, Number of iteration$,,,,.
2. Initialize: Ay ; =0forj=1,...,n
3. Loopfort=1,...,tmax
(@) dy; = el"MX)i /5 eEMADifor =1, ..., m
(b) j: = argmax(d/ M),
(© e = (df M),
(d) oy =L (}f—)
() Ai+1 = At + i€y, Whereej, is 1 in positionj, and O elsewhere.
4. Output: Acombinedj = Atpaet1,5/ [ Atmmant1ll1
Thus at each iteration, the distributidpnis computed (Step 3a), classifigmwith maximum

edge is selected (Step 3b), and the weight of that classifiepdlated (Step 3c, 3d, 3e).
(Note thatwlog one can omit fronM all the unused columns.)

AdaBoost can be reduced to the following iterated map fordhs. This map gives a
direct relationship betweedy;, andd,, 1, taking the normalization of Step 3a into account
automatically. Initializel; ; = 1/m for ¢ = 1, ..., m as in the first iteration of AdaBoost.

Reduced Iterated Map:

1. j; = argmax(d{ M);
2.1 = (d?M)jt

3. dt+1,i = fori = 1,....m

di,i
1+M'th T¢



To derive this map, consider the iteration defined by AdaBand reduce as follows.

g e~ (MAL); o—(Mij, ae) h 1 ) 14+r
; = wherea; = — » SO
t+1, zzﬂil e—(MA); o= (M o) a 2 . 1—1r

1—r %Mijt 1—-—M:. r %
e*(Mijtat) — t — [ Tuett , thus
1+ 7 1+ Mj,ry

dyi
1 1"
m 1-M5. re\2 (14+M;i,re \ 2
2im1 dyg (1+1V[;j:n) (17]V1ij-zr:)
Defined; = Y. —yyd,;andd_ =1 —d;. Thus,d; = H andd_ = 157« For
it ’
each: such that)/;;, = 1, we find:

dit1

dyor s = di; _dyy
t+1,0 = =

d++d, (}i—::) 1+
Likewise, for eachi such that)/;;, = —1, we findd;y;, = ldjjt. Our reduction is
complete. To check that;" | di1; = 1, we seed " diy1; = dy + 55-d- =
2dy T 2d_ —

3 The Dynamics of Low-Dimensional AdaBoost

First we will introduce a simple:83 input matrix and analyze the convergence of AdaBoost
in the optimal case. Then we will consider a larger matrix sinolw that AdaBoost fails to
converge to a maximum margin solution in the non-optimaécas

-1 1 1

Consider the following input matrikl = Lo corresponding to the case of

three training examples, where each weak classifier mifils one example. (We could
add additional hypotheseshkb, but these would never be chosen by AdaBoost.) The max-
imum value of the margin fo is 1/3. How will AdaBoost achieve this result? We are in
the optimal case, wherg = argma>§(dtTM );. Consider the dynamical system on the sim-
plefo’:1 d:; =1, d:; > 0 Vi defined by our reduced map above. In the triangular region
with vertices(0,0,1), (1/3,1/3,1/3),(0, 1,0), j; will be 1. Similarly, we have regions for

ji = 2 andj, = 3 (see Figure 1(a)). Sinog; will always satisfy(d’, ,M);, = 0, the
dynamics are restricted to the edges of a triangle withsestD, 1, 1), (1,0, 1), (3, 3.0)

after the first iteration (see Figure 1(b)).
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Figure 1:(a-Left) Regions ofl;-space where classifiejs = 1,2, 3 will respectively be selected.
(b-Right) All weight vectorddo, ..., d.,, .. are restricted to lie on the edges of the inner triangle.
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Figure 2:(a-Upper Left) The iterated map on the unfolded triangle. Both axesogiwedinates on
the edges of the inner triangle in Figure 1(b). The plot shows wtiere will be, givend:. (b-Upper
Right) The map from (a) iterated twice, showing whele s will be, givend,. There are 6 stable
fixed points, 3 for each cycle. (c-Lower Left) 50 timesteps of AdaBeb®wing convergence of
d;'s to a cycle. Small rings indicate earlier timesteps of AdaBoost, while lamgs indicate later
timesteps. There are many concentric rings at posiﬁiﬁ;])é, dﬁ?}c anddg)c. (d-Lower Right) 500
timesteps of AdaBoost on a random 11x21 matrix. The axed grersd; .

On this reduced 1-dimensional phase space, the iteratedhasapo stable fixed points or
orbits of length 2. However, consider the following periodrbit of length 3:
AT = (328 VBo1 1) g7 _ (L 3=v5 V5-1y q@)T _ (V51 L 3-V5) This

cyc — 1 cyc 1 cyc 59
is clearly a cycle, since starting fro (glj)c AdaBoost will choosg; = 1. Thenr; =
(A%TM), = (V5 — 1)/2. Now, computingd'!) . /(1 + M; 1) for eachi yieldsd").

cyc,i

In this way, AdaBoost will cycle between hypotheses= 1,2,3,1,2,3, etc. There is
in fact another 3-cycled )T — (3= 1 51y T (l Vi1 ,3=5) gt —

cyc’ 120 4 cyc’ 4 cyc’
(‘/5*1, 4‘f 1) To find these cycles, we hypothesized only that a cycle aftleB exists,

V|S|t|ng each hypothe3|s in turn, and used the reduced mumssrom Section 2 to solve for
the cycle coordinates.

We give the following outline of the proof for global stabyti This map is a contrac-
tion, so any small perturbation from the cycle will diminisfielding local stability of
the cycles. One only needs to consider the one-dimensioagl defined on the un-
folded triangle, since within one iteration every trajegtéands on the triangle. This
map and its iterates are piecewise continuous and monotorgach piece, so one can
find exactly where each interval will be mapped (see Figua)2( Consider the sec-
ond iteration of this map (Figure 2(b)). One can break theolgiefd triangle into in-
tervals and find the region of attraction of each fixed cycle;fdact the whole trian-
gle is the union of both regions of attraction. The convecgeto one of these two 3-
cycles is very fast; Figure 2(b) shows that the absoluteestifpthe second iterated map
at the fixed points is much less than 1. The combined clasgifi@Boost will output
i Acompined = ((dSye M)1, (A M), (A5 M)s)/normaliz. = (1/3,1/3/1/3), and
since MiR(MXcompbined): = 1/3 AdaBoost produces a maximal margin solution.



This3 x 3 case can be generalizeditoclassifiers, each having one misclassified training
example; in this case there will be periodic cycles of lengthand the contraction will
also persist (the cycles will be stable). We note that fornel@w-dimensional case we
tried, periodic cycles of larger lengths seem to exist (sagln Figure 2(d)), but that the
contraction at each iteration does not, so it is harder tovstability.

Now, we give an example to show that non-optimal AdaBoossdus necessarily con-

verge to a maximal margin solution. Consider the followingut matrix (again, omitting

-1 1 1 1 -1

unused columnswm = | ; 7' Y4 1 ' |. For this matrix, the maximal mar-

1 1 1 —1 1
gin p is 1/2. In the optimal case, AdaBoost will produce this vabyecycling among the
first four columns ofM. Recall that in the non-optimal cage € {j : (dfM); > p}.

Consider the following initial condition for the dynamiad! = (3-/5, 3=v5 1 51

Since(dTM);5 > p, we are justified in choosingj = 5, although here it is not the optimal

choice. Another iteration yieldd? = (1,1, \/54‘1, %5), satisfying(d¥M), > p for
which we choosg; = 4. Atthe third iteration, we choosg = 3, and at the fourth iteration
we findd, = d;. This cycle is the same cycle as in our previous exampledatth there

is one extra dimension). There is actually a whole manifélg-oycles in this non-optimal

case, sincel; = (e, # -6 3, %) lies on a cycle for any, 0 < e < %5. In any
case, the value of the margin produced by this cycle is 1/31/20

We have thus established that AdaBoost is not robust in theesere described; if the
weak learner is not required to choose the optimal hypatreseach iteration, but is only
required to choose a sufficiently good weak classifiee {j : (dfM); > p}, then a
maximum margin solution will not necessarily be attainetdptactice, it may be possible
for AdaBoost to converge to a maximum margin solution wheuotiyeses are chosen to be
only slightly non-optimal; however the notion of non-op#imve are using is a very natural
notion, and we have shown that AdaBoost may not convergehtere. Note that for some
matricesM, a maximum margin solution may still be attained in the netiroal case (for
example the simple :83 matrix we analyzed above), but it is not attained in genasal
shown by our example. We are not saying that the only way faBwbst to converge to
a non-optimal solution is to fall into the wrong cycle; thenay be many other non-cyclic
ways for the algorithm to fail to converge to a maximum margfution. Also note that
for the other algorithms mentioned in Section 1 and for the akyorithms in Section 4,
there are fixed points rather than periodic orbits.

4 Coordinate Ascent for Maximum Margins

AdaBoost can be interpreted as an algorithm based on c@atediiescent. There are other
algorithms such as AdaBodsand arc-gv that attempt to maximize the margin explicitly,
but these are not based on coordinate descent. We now saghessting algorithm that
aims to maximize the margin explicitly (like arc-gv and Adai3t) yet is based on co-
ordinate ascent. An important note is that AdaBoost and ewur algorithm choose the
direction of descent/ascent (value pf using the same formulg, = argma>§(dtTM)j.
This lends further credence to the conjecture that AdaBmastiimizes the margin in the
optimal case, since the direction AdaBoost chooses is the siérection one would choose
to maximize the margin directly via coordinate ascent.

The function that AdaBoost minimizes via coordinate deseef (A) = > 1" e~ MA):,
Consider any such tha{M A); > 0 Vi. Thenlim,_, o, aA will minimize F', yet the origi-
nal normalized\ might not yield a maximum margin. So it must be fivecessof coordi-
nate descent which awards AdaBoost its ability to increaaeyims, not simply AdaBoost’s
ability to minimize F'. Now consider a different function (which bears a resemt#an an



e-Boosting objective in [7]):

1 1 m - v n
GA) = —WlnF(A) = —mln (Ze WA)Z) where|[ Al :=> " A; .

i=1 Jj=1

It can be verified thay has many nice properties, e.g:,is a concave function for each
fixed value of||A||;, whose maximum only occurs in the limit d\||; — oo, and more
importantly, ag|A|l; — oo we haveG(X) — p(A), wherep(X) = (min;(MX);)/|IA
the margin of\. That is,

1,

me—FMIAL ST e MA 5 e AL 1)

>
—(Inm)/ AL + p(X) < G(A) < (A )
For (1), the first inequality becomes equality only whenralexamples achieve the same
minimal margin, and the second inequality holds since wk tody one term. Rather than

performing coordinate descent éhas in AdaBoost, let us perform coordinate ascent on
G. The choice of directior, at iterationt is:

dG(A¢ + cej) F:le e M pg, 1
argmax—— = = argmax| == + 1
' j F(o)[Aellx ANl

j do a=0 ]
Of these two terms, the second term does not deperidanmd the first term is proportional
to (d7 M);. Thus the same direction will be chosen here as for AdaBoost.

n(F(A)).

Now consider the distance to travel along this directioealty, we would like to maximize
G(M\: + aej,) with respect tay, i.e., we would like:

dG (At + aey,) S e (MA)i o= Moy
0 = il S i 4 A — i=1 Je G A .
do [Ats1lla F(n + ae;.) (At + aey,)

There is not an analytical solution far but maximization of7(\;+«e;, ) is 1-dimensional
so it can be performed quickly. An approximate coordinateasalgorithm which avoids
this line search is the following approximation to this nmakation problem:

ity e My, oy
F(A: + aej,)
We can solve fory; analytically:

0~

1 14+ Tt 1 1+ gt
=1 — =1 , Whereg; = max{0,G(\;)}. 3
Qg 211(1_”) 2n<1—gt) gt { (A)} 3)
Consider some properties of this iteration scheme. Thetagdea is strictly positive (in

the case of positive margins) due to the Von Neumann min-imasrem and equation (2),

thatis:r; > p = mingea,, max; (d7M),; = max; ., - min; (M A)i > min; (M) /[ A1
> G(A;), and thusy, > 0 Vt. We have preliminary proofs that the value@fincreases
at each iteration of our approximate coordinate ascentighge, and that our algorithms

converge to a maximum margin solution, even in the non-agdtoase.

Our new update (3) is less aggressive than AdaBoost's, iglttlsi more aggressive than
arc-gv's. The other algorithm we mention, AdaBdodtas a different sort of update. It
converges to a combined classifier attaining a margin insidenterval[p — v, p| within
2(log, m)/v? steps, but does not guarantee asymptotic convergenpefdoa fixed v
There are many other boosting algorithms, but some of themine minimization over
non-convex functions; here, we choose to compare with tinglsi updates of AdaBoost
(due to its fast convergence rate), AdaBépstnd arc-gv. AdaBoost, arc-gv, and our
algorithm have initially large updates, based on a conseevastimate of the margin.
AdaBoost’s updates are initially small based on an estimate of the.edg
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Figure 3: (a-Left) Performance of all algorithms in the optimal case on a rantiom 21 input
matrix (b-Right) AdaBoost, arc-gv, and approximate coordinate ascesynthetic data.

Figure 3(a) shows the performance of AdaBoost, arc-gv, AdaB (parameter set to
.001), approximate coordinate ascent, and coordinate asce@t @vith a line search for
ay at every iteration) on a reduced randomly generafied 21 matrix, in the optimal case.
AdaBoost settles into a cycle (as shown in Figure2(d)), sajtdates remain consistently
large, causind|\.||; to grow faster, thus converge faster with respeczto The values
of r, in the cycle happen to produce an optimal margin solutionAdaBoost quickly
converges to this solution. The approximate coordinaterasalgorithm has slightly less
aggressive updates than AdaBoost, and is very closelyaigiith coordinate ascent; arc-
gv is slower. AdaBoosthas a more methodical convergence rate; convergenceialynit
slower but speeds up later. Artificial test data for Figure) 3¢as designed as follows:
50 example points were constructed randomly such that gadies on a corner of the

hypercube{—1,1}'%. We sety; = signY_,-, x:(k)), wherex; (k) indicates thek™"
component ok;. The;" weak learner i&; (x) = x(j), thusM;; = y;x;(j). As expected,
the convergence rate of approximate coordinate ascestiativeen AdaBoost and arc-gv.

5 Conclusions

We have used the nonlinear iterated map defined by AdaBoastterstand its update rule
in low-dimensional cases and uncover cyclic dynamics. V@eyeced an example to show
that AdaBoost does not necessarily maximize the margireimtim-optimal case. Then, we
introduced a coordinate ascent algorithm and an approgic@drdinate ascent algorithm
that aim to maximize the margin directly. Here, the direttaf ascent agrees with the
direction chosen by AdaBoost and other algorithms. It is p@noproblem to understand
these dynamics in other cases.
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