
Journal of Computer and System Sciences, 52(2):201-213, April, 1996.

Learning Sparse Multivariate Polynomials over a Field with

Queries and Counterexamples

Robert E. Schapire

AT&T Bell Laboratories

Murray Hill, NJ 07974

schapire@research.att.com

Linda M. Sellie

�

University of Chicago

Chicago, IL 60637

sellie@research.att.com

Abstract. We consider the problem of learning a polynomial over an arbitrary �eld F

de�ned on a set of boolean variables. We present the �rst provably e�ective algorithm

for exactly identifying such polynomials using membership and equivalence queries.

Our algorithm runs in time polynomial in n, the number of variables, and t, the

number of nonzero terms appearing in the polynomial. The algorithm makes at most

nt+ 2 equivalence queries, and at most (nt+ 1)(t

2

+ 3t)=2 membership queries. Our

algorithm is equally e�ective for learning a generalized type of polynomial de�ned

on certain kinds of semilattices. We also present an extension of our algorithm for

learning multilinear polynomials when the domain of each variable is the entire �eld F .

1 Introduction

We consider the problem of learning a polynomial f over an arbitrary �eld F de�ned

on a set of boolean variables. Thus, we are interested in the learnability of multivariate

polynomials over a �eld F when the domain of each variable x

i

has been restricted

to the values 0 and 1 (the additive and multiplicative identity elements of F). This

problem models a learning situation in which examples are most naturally described

by vectors of boolean attributes, but in which the behavior of the function to be

learned is most easily described by a polynomial in the boolean values.

We consider the learnability of such polynomials in a model introduced by An-

gluin [1] in which the learning algorithm has two forms of access to the unknown

target polynomial: The �rst of these is a so-called membership oracle which evalu-

ates the target polynomial f on any variable-setting a of the learner's choosing and

returns the result f(a). The second form of access is a so-called equivalence oracle

which accepts as input a hypothesis polynomial h conjectured by the learner to be

equivalent to the target polynomial. If h and f are functionally equivalent, then the

equivalence oracle replies \equivalent" (in which case we say that the target has

been exactly identi�ed); otherwise, the equivalence oracle provides a counterexample,

�

Currently visiting AT&T Bell Laboratories.

a setting a of the variables on which the hypothesis and target polynomials evaluate

to di�erent values, i.e., for which h(a) 6= f(a).

The main result of this paper is a provably correct algorithm for exactly identifying

polynomials on a set of boolean variables over an arbitrary �eld F using equivalence

and membership queries. Our algorithm runs in time polynomial in n, the total

number of variables, and t, the number of nonzero coe�cients of terms in f (called

the sparcity of f). The algorithm makes no more than nt+2 equivalence queries and

roughly nt

3

=2 membership queries. This is the �rst provably e�cient algorithm for

this problem.

As an added feature, our algorithm uses only equivalence queries that are \proper"

in the sense that each conjectured hypothesis is itself a t-sparse polynomial.

By applying a technique of Angluin [1], our result can be extended to Valiant's

so-called probably approximately correct (PAC) learning model [20]. Speci�cally, An-

gluin shows that an equivalence oracle can always be replaced by a source of random

examples, in which case the learning algorithm will successfully �nd a hypothesis that

is a good approximation of the target polynomial with respect to the distribution on

the random examples. Thus, our result implies that polynomials on the boolean

domain over any �eld F can be learned in the PAC model with membership queries.

Of particular interest is the case in which F is taken to be GF(2), the �nite

�eld of integers modulo two. Such polynomials can be viewed equivalently as depth-

two boolean formulas consisting of the xor of several monotone monomials (i.e.,

conjunctions of unnegated variables).

The class of polynomials on the boolean domain includes a wide variety of func-

tions. For instance, we show that logarithmic-depth decision trees can be computed

by such polynomials.

One natural extension of our problem is to allow the domain of each variable to

be the entire �eld F , rather than the restricted domain f0; 1g. We show that our

algorithm can be used as a subroutine to learn a polynomial f : F

n

! F , provided

that f is multilinear (so that each variable has degree at most 1). It is an open

problem whether non-multilinear polynomials are generally learnable in this model,

for an arbitrary �eld F .

The proof of the correctness of our algorithm relies on certain lattice-theoretic

properties of the boolean domain f0; 1g

n

, suggesting a natural extension of the domain

of the target function. Speci�cally, we prove that our algorithm can learn a function

f : X ! F where F is a �eld and X is a meet-semilattice with no in�nite chains,

and where f is represented by a generalized type of \polynomial" on X.

Previous work. The problem of learning or inferring a polynomial from exam-

ples has an extensive history. For certain \large" �elds, such as R, e�cient algorithms

are known for identifying a polynomial from sample points of the learner's choosing.

However, these algorithms typically require that it be possible to assign each variable

many di�erent values (hence the need for the �eld to be \large"). Thus, such algo-

rithms are essentially useless if the domain of the function is the boolean domain since

in this case each variable can only be assigned one of two values. Indeed, for small

�elds such as GF(2), most of the previous work has demonstrated that polynomials

are hard to learn in various models, except in special cases.

2

In the PAC model (in the absence of membership and equivalence queries), Blum

and Singh [5] and Fischer and Simon [11] show that it is computationally hard to

learn t-sparse polynomials over GF(2) for any �xed t � 2 (assuming RP 6= NP, and

also assuming that the hypothesis must be expressed as a t-sparse polynomial). Their

result also implies that it is hard to learn t-sparse GF(2)-polynomials using a \proper"

equivalence oracle. Their proofs can be extended to show that t-sparse polynomials

over any �eld F cannot be learned in either of these learning models, for any �xed

t � 2, even if the domain is limited to f0; 1g

n

.

On the other hand, Blum and Singh show that t-sparse GF(2)-polynomials can

be e�ciently approximated in the PAC model using a DNF-representation in time

poly(n

t

). Also, Fischer and Simon give an e�cient algorithm for the special case in

which each term of the target polynomial has size at most k, where k is a constant.

(Although proved for GF(2), this algorithm generalizes easily to any �eld F .) Their

algorithm uses linear-algebraic techniques to learn such polynomials in time poly(n

k

),

either in the PAC model, or using equivalence queries only.

As mentioned above, much previous work has also focused on the problem of

\interpolating" a polynomial, i.e., on the problem of exactly identifying a polyno-

mial using membership queries only. As noted above, most of this work has dealt

with large �elds, such as the real numbers. For instance, Zippel [22, 23], Ben-Or

and Tiwari [3], and Mansour [18] give e�cient algorithms for interpolating sparse

multivariate polynomials over such �elds.

Grigoriev, Karpinski and Singers [13] and Clausen et al. [8] consider the problem

of interpolating a sparse polynomial over various �nite �elds (see also the related work

of Dress and Grabmeier [9] and D�ur and Grabmeier [10]). However, for small �elds

(such as GF(p), where p is a small prime), their algorithms are e�cient only if queries

can be made over a larger extension �eld. For the �eld GF(2), when no such extension

is made, Clausen et al. show that t-sparse, n-variable polynomials can be e�ciently

interpolated using poly(n

log t

) queries, and that the number of queries required is

essentially optimal. These bounds are also proved by Roth and Benedek [19], and

are re�ned by Hellerstein and Warmuth [15] who show that poly(n

log k

) queries su�ce

where k is the maximum number of terms in which any variable appears.

The lower bound results mentioned above can easily be extended to show that

interpolation of a t-sparse polynomial over any �eld F requires at least n

(log t)

boolean

membership queries. Thus, for our problem, in which the goal is inference of an F -

valued function on the boolean domain, membership queries alone cannot su�ce for

polynomial-time identi�cation.

Thus, in sum, the previous research has demonstrated that it is hard or impossible

to learn a sparse polynomial over any �eld on a set of boolean variables in polynomial

time using membership queries only, random examples only, or proper equivalence

queries only. In contrast, our result demonstrates the tractability of the learning

problem if both membership queries and equivalence queries (or random examples)

are available to the learner.

In Section 2, we describe our representation of polynomials, and their general-

ization to arbitrary semilattices. Our learning algorithm is described in Section 3.

Although the algorithm is appealingly simple, its analysis is quite involved and relies

3

on certain combinatorial facts proved in Section 4. We apply these combinatorial

results to give a full analysis of the algorithm in Section 5, and present extensions

and applications of the main algorithm in Section 6.

2 Polynomials and Semilattices

Let f be a multivariate polynomial over a �eld F de�ned on n boolean variables.

Then f is a function mapping the boolean domain f0; 1g

n

into the �eld F , where 0

and 1 are the additive and multiplicative identity elements of F . The sparcity of f is

the number of nonzero coe�cients appearing in f ; if f has sparcity at most t, then f

is said to be t-sparse.

Since x

2

= x for x 2 f0; 1g, we can assume without loss of generality that f

is multilinear, i.e., that no variable has exponent greater than one in f . It then

becomes natural to associate with each monomial the characteristic vector of indices

of variables that appear in that monomial. For instance, if n = 5 then the monomial

x

1

x

3

x

4

is associated with the vector 10110. Conversely, every vector a 2 f0; 1g

n

is

associated with a monomial which we denote by x

a

(for example, the monomial x

2

x

4

could also be written x

01010

).

Using this notation, every t-sparse polynomial can be written in the form

f(x) =

t

X

i=1

c

i

x

t

i

(1)

for some c

i

2 F and t

i

2 f0; 1g

n

.

Our algorithm depends crucially on the lattice properties of the boolean domain

f0; 1g

n

. To make this dependence explicit, we will prove our results using an extended

notion of \polynomial" for more general domains. Speci�cally, we will show that such

polynomials can be learned if the domain is a meet-semilattice with no in�nite chains

(de�ned below).

Let X be a set partially ordered by �. We say that an element c 2 X is the meet

of a and b if for all d 2 X, d � c if and only if d � a and d � b. Thus, the meet

of a and b, written a ^ b, can be viewed as the greatest lower bound of a and b.

If the meet exists for every pair of elements a and b in X, then X is said to be a

meet-semilattice (henceforth called simply a semilattice).

On the boolean domain f0; 1g

n

, it is natural to de�ne a partial order in which

a � b if and only if a

i

� b

i

for i = 1; : : : ; n (and where we de�ne the usual ordering

on f0; 1g with 0 < 1). With respect to this ordering, f0; 1g

n

is clearly a semilattice.

The meet a^b is the vector c where c

i

= a

i

b

i

for each i. (For instance, 01101^10101 =

00101.) Note also that the monomial x

a

is satis�ed by b (i.e., is equal to 1) if and

only if a � b.

For a semilatticeX, and for any point a 2 X, we de�ne a function �

a

: X ! f0; 1g

by the rule

�

a

(b) =

(

1 if a � b

0 otherwise.

4

Analogous to the case where X is the boolean domain, we de�ne a polynomial over

F on semilattice X to be a function f : X ! F of the form

f(x) =

t

X

i=1

c

i

�

t

i

(x) (2)

where c

i

2 F and t

i

2 X. As noted above, for the boolean domain, x

a

= �

a

(x) for

any a 2 f0; 1g

n

; thus, the de�nitions given in equations (1) and (2) are equivalent

for this domain. Also, consistent with our earlier notion of sparcity, we say that a

polynomial of the form given in equation (2) is t-sparse, and, if each c

i

is nonzero,

that the polynomial has sparcity t.

For a function f , we will use the notation

~

f(a) to denote the coe�cient (possibly

zero) of �

a

(x). Thus,

f(x) =

X

a2X

~

f (a)�

a

(x): (3)

(If f is a polynomial, then it has a �nite number of nonzero coe�cients, so this sum

will be well de�ned even if X is in�nite.) Equivalently, by the de�nition of �

a

,

f(x) =

X

a2X

a�x

~

f (a):

As an aside, we note that if X is �nite, then every function f : X ! F can

be written uniquely in the form of equation (3). This is because the collection of

functions f�

a

: a 2 Xg forms a linearly independent basis for the jXj-dimensional

space of all functions mapping X into F .

If X has any minimal element, then this element must be unique, and it must

be smaller than every other element of X. Such an element, if it exists, is called a

bottom element, and it is denoted ?.

Two elements a;b 2 X are comparable if a � b or b � a. A subset C � X is a

chain if every pair of elements in C are comparable. The length of such a chain is

jCj � 1. Thus, a length-n chain can be viewed as a sequence a

0

< a

1

< � � � < a

n

.

If ? exists, then the height of a point a 2 X, denoted jjajj, is de�ned to be the

length of the longest chain starting at ? and ending at a. The height of X is then

the maximum height of any element in X, or equivalently, is the length of the longest

chain in X. Thus, semilattice X has �nite height if it contains no in�nite chains.

On the boolean domain f0; 1g

n

, the bottom element is 0, the vector whose every

component is 0. The height of any vector a is equal to the number of 1's in the vector

a, and the height of the entire domain is n.

3 The Algorithm

This section describes our algorithm for learning polynomials with queries. In later

sections, we will show that this algorithm can infer any polynomial over a �eld F

5

on a �nite-height semilattice X in time polynomial in the sparcity t of the target

polynomial f , and in the height n of the semilattice X.

We assume throughout that there exist e�cient procedures for computing a ^ b,

jjajj, and for deciding if a � b for any a;b 2 X. Such procedures clearly exist if

X = f0; 1g

n

.

We begin by observing that it is easy to �nd a hypothesis that is consistent with

a given set of labeled examples. Speci�cally, let S � X be a �nite set of examples

labeled by f . We de�ne a new polynomial h in terms of its coe�cients as follows:

For a 2 S, we de�ne

~

h(a), the coe�cient in h of �

a

(x), using the inductive rule:

~

h(a) = f(a)�

X

a

0

2S

a

0

<a

~

h(a

0

): (4)

If a 62 S, then

~

h(a) is de�ned to be 0. Algorithmically, it is clear that all of the

coe�cients

~

h(a) can be computed by visiting all of the elements in S from the smallest

to the largest; that is, we visit the elements in such an order that no element a is

visited until every element smaller than a has been visited.

The resulting polynomial

h(x) =

X

a2X

~

h(a)�

a

(x) =

X

a2X

a�x

~

h(a) (5)

is called the manifest hypothesis of S with respect to f , and it is denoted hyp

f

(S).

When f is clear from context we write simply hyp(S).

As mentioned above, hyp(S) is consistent with f on S (although nothing is guar-

anteed about its behavior on X � S):

Lemma 1 Let f : X ! F , where X is a semilattice and F is a �eld. Let S be a

�nite subset of X. Then the polynomial h = hyp

f

(S) is consistent with f on S; that

is, f(a) = h(a) for all a 2 S.

Proof: Note that, by construction of h, for every a 2 S,

f(a) =

X

a

0

2S

a

0

�a

~

h(a

0

) =

X

a

0

2X

a

0

�a

~

h(a

0

)

since

~

h(a) = 0 for a 62 S. On the other hand, by equation (5), the right hand side of

this equation is exactly equal to h(a).

If h = hyp

f

(S), then let

terms

f

(S) = fa 2 X :

~

h(a) 6= 0g:

That is, terms

f

(S) is the set of elements associated with the nonzero coe�cients of

hyp(S). Clearly, terms(S) � S, and jterms(S)j is exactly the sparcity of hyp(S). (As

with hyp(S), we drop the subscript of terms

f

(S) when f is clear from context.)

6

LearnPoly

Given: access to oracles Equiv and Member for target polynomial f

Output: a hypothesis equivalent to f

1 S ;.

2 loop

3 c Equiv(hyp(S))

4 if c = \equivalent" then halt and output hyp(S)

5 repeat

6 AddElement(c)

7 c EasyCounterexample()

8 until (c = \stable")

9 end

Figure 1: An algorithm for learning polynomials over F .

Although the hypothesis hyp(S) is consistent with a given sample S, its sparcity

may be quite large relative to the target function f . For example, suppose that f

is the constant function 1, X = f0; 1g

n

and S = fa 2 X : jjajj = n=2g, i.e., S is

the set of all examples with exactly n=2 1's. Then terms(S) = S, so the hypothesis

hyp(S) has sparcity

�

n

n=2

�

= 2

(n)

, even though the target function f has only a single

nonzero term.

Because hyp(S) may be so much larger than the target function, by Occam's

Razor, we would not intuitively expect hyp(S) to generalize well as a hypothesis

for classifying elements outside of S. We show below how to �nd a much smaller

consistent hypothesis. Speci�cally, we show how to construct hypotheses which are

no larger than the target function, a technique which will help us in bounding the

number of queries made by our algorithm.

The main idea of this technique for simplifying the hypothesis is to add examples

to the set S, and to then recompute the manifest hypothesis. Note that adding an

example c to the set S will change the manifest hypothesis if and only if c is a

counterexample (that is, hyp(S) 6= hyp(S [fcg) if and only if f(c) 6= hyp(S)(c)).

Let t be the sparcity of f . A key fact, which we prove in a later section, states

that if jterms(S)j > t then there must exist a pair a;b 2 terms(S) for which a^b is a

counterexample for hyp(S). Thus, if jterms(S)j > t then we can �nd a counterexample

to hyp(S) by asking membership queries for the elements a^b where a;b 2 terms(S).

We call such a counterexample an easily observable counterexample since it can be

easily detected using membership queries.

If hyp(S) has no easily observable counterexamples, then we say that S is stable

with respect to the target function f . Thus, S is stable if for every pair a;b 2

terms(S), f(a ^ b) = h(a ^ b) where h = hyp(S). Stability is a key notion in the

development that follows.

By repeatedly adding easily observable counterexamples to S, we can eventually

stabilize S (since there are only a �nite number of elements that can ever be added).

Unfortunately, if we add the counterexamples in an arbitrary order, we could poten-

7

EasyCounterexample

Return: an easily observable counterexample, or the
ag \stable" if none exists

1 T ;

2 while terms(S) 6= T

3 a any minimum height element in terms(S)� T

4 for b 2 T

5 query and record Member(a ^ b)

6 if a ^ b is a counterexample for hyp(S) then

7 return a ^ b

8 else

9 S S [fa ^ bg

10 end

11 T T [fag

12 end

13 return \stable"

Figure 2: The subroutine EasyCounterexample.

tially add an exponential number of new elements before stabilizing. However, we

show later in the paper that if we add the counterexamples in a somewhat greedy

fashion, with bias toward the choice of small counterexamples, then we are guaranteed

to stabilize after adding at most a polynomial number of elements to S. (Intuitively,

we want to choose small counterexamples since these are likely to be \closer" to a

true term of the target formula.)

A high-level description of our algorithm is given in Figure 1. In the �gure, Equiv

is an equivalence oracle which takes as input a conjectured hypothesis polynomial,

and returns either the
ag \equivalent" if the hypothesis is equal to the target, or

a counterexample for the hypothesis (i.e., an element on which the hypothesis and

target functions disagree). We will also be using a membership oracleMember which

takes as input an element a 2 X and returns the value of the target on a.

Our algorithm maintains a set of examples S which is stable prior to each equiv-

alence query. After each counterexample c is received from the equivalence oracle,

we use c to modify S (line 6), and then restabilize S by repeatedly �nding easily

observable counterexamples (line 7) and using them to again modify S.

The subroutine for �nding easily observable counterexamples is called Easy-

Counterexample and is described in Figure 2. The idea of the subroutine is

simple: we test pairs a;b 2 terms(S) until we �nd one for which a^b is a counterex-

ample. The subroutine tests pairs in a straightforward greedy fashion so as to �nd the

counterexample a ^ b for which max(jjajj; jjbjj) is minimized. (We will see later why

it is important to add the non-counterexamples to S at line 9.) If no counterexample

is found, then S must be stable, and the subroutine returns a
ag indicating this fact.

Finally, we describe AddElement, the subroutine that modi�es S using a coun-

terexample c; this subroutine is shown in Figure 3. Before adding c to S, the subrou-

8

AddElement

Input: a counterexample c for hyp(S)

1 ` jjcjj.

2 repeat

3 for a 2 terms(S) : jjajj = `

4 query and record Member(a ^ c)

5 if a ^ c is a counterexample for hyp(S) then

6 c a ^ c

7 exit \for" loop

8 end

9 ` min(` � 1; jjcjj).

10 until ` = 0

11 S S [fcg [fa ^ c : a 2 terms(S); jjajj � jjcjjg.

Figure 3: The subroutine AddElement.

tine �rst determines if there is another element a 2 terms(S) for which a^ c is also a

counterexample. If such an a can be found, then we replace c with the smaller coun-

terexample a ^ c. We will see later why this greedy approach is helpful for analyzing

the performance of the algorithm.

Note that by adding a new counterexample to S, we may radically change the

structure and size (i.e., sparcity) of hyp(S). Thus, it is not immediately clear that

this technique will allow us to make substantial progress towards stabilization of S.

The proof that S can be stabilized quickly is given in the following sections and is

based on certain combinatorial properties of stable sets.

4 Properties of Stable Sets

In this section, we prove various properties of stable sets that will enable us to prove

bounds on the number of queries made by our algorithm. In addition to the notion of

stability described in the last section, we will also be interested in a slightly stronger

notion: We say that a �nite set S � X is properly stable with respect to a function f

if a^b 2 S for all a;b 2 terms

f

(S). Lemma 1 implies that S is stable if it is properly

stable.

We begin with a proof that the sparcity of the manifest hypothesis of a stable

set cannot exceed the sparcity t of the target polynomial. This fact, which may

be of independent combinatorial interest, will be used repeatedly in the analysis of

our algorithm. For instance, because S is stable prior to each equivalence query,

this implies that the equivalence queries used by our algorithm are \proper" in the

sense that the conjectured hypotheses always belong to the target class of t-sparse

polynomials.

9

Theorem 2 Let f be a t-sparse polynomial over a �eld F on a semilattice X. Let S

be a �nite subset of X that is stable with respect to f . Then jterms

f

(S)j � t.

We present two very di�erent proofs of this theorem, one below and the other in

the appendix.

Before presenting the �rst proof, we state two algebraic lemmas. Although these

lemmas are standard, we include brief proofs for completeness.

We say that an element s 2 F is a square in F if there exists an element r 2 F

for which r

2

= s.

Lemma 3 Let F be a �eld, and let A � F be a �nite set of elements of F . Then

there exists a �eld E of which F is a sub�eld, and in which each element of A is a

square.

Proof: It su�ces to prove the lemma in the case that A is a singleton since the

general result then follows by induction on jAj. If A is the singleton fsg (where,

without loss of generality, s is not already a square in F) then the result follows,

for instance, from Theorem 5.3.1 of Herstein [16] in which E is taken to be the �eld

F [x]=(x

2

� s). The result can also be proved more directly by formally creating a

new element r not already in F , and by de�ning a new �eld E = fa+ br : a; b 2 Fg

in which r

2

= s by de�nition (similar to the manner in which the imaginary number

i =

p

�1 is adjoined to R to obtain the complex �eld C). It can be veri�ed that E is

indeed a �eld that satis�es the required properties.

We de�ne addition between two vectors a;b 2 F

t

in the usual way. Thus, a + b

is that vector c 2 F

t

for which c

i

= a

i

+ b

i

for i = 1; : : : ; t. Similarly, a �b =

P

t

i=1

a

i

b

i

is the standard inner product of a and b.

Lemma 4 Let A � F

t

be a set of vectors over a �eld F such that, for all a;b 2 A:

1. a � a 6= 0, and

2. if a 6= b then a � b = 0.

Then jAj � t.

Proof: We claim that the elements of A are linearly independent. For if

P

a2A

�

a

a =

0 for some coe�cients �

a

2 F , then for any b 2 A,

0 = b � 0 = b �

X

a2A

�

a

a

!

=

X

a2A

�

a

(b � a) = �

b

(b � b)

by property 2. This implies �

b

= 0 by property 1.

Since A is a linearly independent subset of a t-dimensional vector space, it follows

immediately that jAj � t.

Proof of Theorem 2: Let f be the polynomial

f(x) =

t

X

i=1

c

i

�

t

i

(x)

10

where each c

i

2 F and t

i

2 X. Let h = hyp

f

(S).

We assume that S is properly stable. We make this assumption without loss of

generality since adding non-counterexamples to S does not a�ect its manifest hypoth-

esis.

By Lemma 3, the �eld F can be extended to another �eld E in which each of the

coe�cients c

i

is a square. We de�ne a function � : X ! E

t

by the rule:

� (a) = (

p

c

1

�

t

1

(a); : : : ;

p

c

t

�

t

t

(a))

where

p

c

i

is some element whose square equals c

i

. Informally, � (a) encodes the terms

of f that are satis�ed by a: if t

i

� a (so that the corresponding term is satis�ed),

then the ith component of � (a) is

p

c

i

; otherwise, this component is 0. Note that the

value f(a) can be recovered from � (a) simply by taking its inner product with itself

since

� (a) � � (a) =

t

X

i=1

c

i

�

t

i

(a) = f(a): (6)

More generally,

� (a) � � (b) =

t

X

i=1

c

i

�

t

i

(a ^ b) = f(a ^ b) (7)

since �

t

(a) � �

t

(b) = �

t

(a ^ b) for any t, by de�nition of the meet operator.

Finally, we de�ne the function
 : S ! E

t

. This function is de�ned recursively

for a 2 S by the rule:

(a) = � (a)�

X

a

0

2terms(S)

a

0

<a

(a

0

): (8)

Notice that
's de�nition mimics the de�nition of the coe�cients

~

h(a) of hyp(S) given

in equation (4). Here, � (a) has taken the role of f(a), and
(a) has taken the role

of

~

h(a). In fact, just as we saw that � (a) � � (a) = f(a), so it will also turn out to

be the case that
(a) �
(a) =

~

h(a) for all a 2 S. Moreover, if a and b are distinct

elements in terms(S), we will see that their images under
 are perpendicular, i.e.,

(a) �
(b) = 0. These properties, which we prove in the next lemma, will allow us

to apply Lemma 4 to complete the proof of the theorem.

Lemma 5 For all a;b 2 terms(S), the following hold:

1.
(a) �
(a) 6= 0.

2. If a 6= b then
(a) �
(b) = 0.

Proof: We argue �rst that, for a;b 2 S, if a � b then

(a) � � (b) =

~

h(a): (9)

For �xed b, this follows by an induction argument on S in which we prove the property

for all of the elements of S in any order that is compatible with �. In other words,

11

when proving that the property holds for some element a 2 S, we assume inductively

that it holds for all a

0

< a.

Suppose a � b. Then, taking the inner product of � (b) with both sides of

equation (8), we obtain

(a) � � (b) = � (a) � � (b)�

X

a

0

2terms(S)

a

0

<a

(a

0

) � � (b):

If a

0

is as in the sum above, then
(a

0

) � � (b) =

~

h(a

0

) by inductive hypothesis. Also,

by equation (7), we have that � (a) � � (b) = f(a) since a � b. Thus,

(a) � � (b) = f(a) �

X

a

0

2terms(S)

a

0

<a

~

h(a

0

)

and the claim follows by de�nition of

~

h(a).

To complete the lemma, we show that the following claims hold for all pairs

(a;b) 2 S

2

:

1. if a = b then
(a) �
(a) =

~

h(a);

2. if b < a and b 2 terms(S) then
(a) �
(b) = 0 (and symmetrically if a < b);

3. if a 6� b, b 6� a and a;b 2 terms(S) then
(a) �
(b) = 0.

These statements clearly imply the lemma: If a 2 terms(S), then, by claim 1,
(a) �

(a) =

~

h(a) 6= 0, and if a and b are distinct elements of terms(S), then
(a)�
(b) = 0

by claims 2 and 3.

The proof of these claims is by induction on S

2

using any order compatible with

the partial order �, where it is understood that (a

0

;b

0

) � (a;b) if and only if a

0

� a

and b

0

� b.

Let (a;b) 2 S

2

. We assume inductively that the three claims hold for all pairs

(a

0

;b

0

) < (a;b).

Proof of claim 1: Suppose a = b. By taking inner product of
(a) with both sides

of equation (8), we see that

(a) �
(a) =
(a) � � (a)�

X

a

0

2terms(S)

a

0

<a

(a) �
(a

0

):

Note that, if a

0

is as in the sum above, then
(a) �
(a

0

) = 0 by claim 2 since

(a;a

0

) < (a;a). Thus,

(a) �
(a) =
(a) � � (a) =

~

h(a)

by equation (9).

12

Proof of claim 2: Suppose b < a and b 2 terms(S). Similar to the proof above,

we take the inner product of
(b) with both sides of equation (8) to obtain

(b) �
(a) =
(b) � � (a)�

X

a

0

2terms(S)

a

0

<a

(b) �
(a

0

):

As before, if b 6= a

0

then
(b) �
(a

0

) = 0 by claims 2 and 3 (since (a

0

;b) < (a;b)).

Thus,

(b) �
(a) =
(b) � � (a)�
(b) �
(b) = 0

since
(b) � � (a) =
(b) �
(b) =

~

h(b) by equation (9) and claim 1.

Proof of claim 3: Suppose a 6� b, b 6� a and a;b 2 terms(S). By de�nition of

(a), we have

� (a) =
(a) +

X

a

0

2terms(S)

a

0

<a

(a

0

)

and similarly for � (b). Thus,

� (a) � � (b) =
(a) �
(b) +

X

a

0

2terms(S)

a

0

<a

(a

0

) �
(b)

+

X

b

0

2terms(S)

b

0

<b

(a) �
(b

0

) +

X

a

0

;b

0

2terms(S)

a

0

<a;b

0

<b

(a

0

) �
(b

0

):

If a

0

;b

0

are as above, then
(a

0

) �
(b) = 0 by claims 2 and 3 since (a

0

;b) < (a;b)

and since a

0

6= b (otherwise, b � a). Similarly,
(a) �
(b

0

) = 0, and
(a

0

) �
(b

0

) = 0

whenever a

0

6= b

0

. Thus,

� (a) � � (b) =
(a) �
(b) +

X

c2terms(S)

c�a^b

(c) �
(c):

That is,

(a) �
(b) = � (a) � � (b)�

X

c2terms(S)

c�a^b

(c) �
(c)

= � (a) � � (b)�
(a ^ b) �
(a ^ b)�

X

c2terms(S)

c<a^b

(c) �
(c)

= f(a ^ b)�

~

h(a ^ b)�

X

c2terms(S)

c<a^b

~

h(c) = 0:

13

The �rst equality can be seen as follows: if a ^ b 2 terms(S), then the equality is

trivial. Otherwise, since S is properly stable, a ^ b 2 S � terms(S) so, by claim 1,

(a ^ b) �
(a ^ b) =

~

h(a ^ b) = 0 (since (a ^ b;a ^ b) < (a;b)), and the equality

again is trivial. The second equality follows from equation (7) and claim 1, and the

�nal equality follows from the de�nition of

~

h(a ^ b).

This completes the induction and the proof of the lemma.

Lemma 5 clearly implies that
 is injective on the restricted domain terms(S),

and moreover, that the set

(terms(S)) = f
(a) : a 2 terms(S)g

satis�es the hypotheses of Lemma 4. Thus, jterms(S)j = j
(terms(S))j � t.

The next theorem will be helpful in proving that our algorithm is guaranteed to

make progress on each iteration. Informally, it states that if S is properly stable, then

adding elements to S can only increase the sparcity of its manifest hypothesis. Note

that this property does not hold in general for unstable sets, or even for sets that

are stable but not properly stable. (To see that Theorem 6 fails for sets that are not

properly stable sets, let X = f0; 1g

4

, F = GF(2), and f(x) = x

1

+x

2

+x

3

+x

4

. Then

the set S = f1110; 1101; 1011g is stable (but not properly stable), and terms(S) = S;

however, if S

0

= S [f1000g, then terms(S

0

) = f1000g.)

Theorem 6 Let f : X ! F where F is a �eld and X is a semilattice. Let S � X

be �nite and properly stable with respect to f . Let S

0

� X be a �nite superset of S.

Then jterms

f

(S)j � jterms

f

(S

0

)j.

Proof: Let h = hyp

f

(S

0

). Then, by Lemma 1, h is consistent with f on S � S

0

.

Thus, hyp

f

(S) = hyp

h

(S) and S is properly stable with respect to h. Therefore, by

Theorem 2, jterms

f

(S)j = jterms

h

(S)j is at most the sparcity of h, which is exactly

jterms

f

(S

0

)j.

5 Analysis and Correctness

Using the theorems proved in the last section, we are now ready to fully analyze our

algorithm.

For a set S � X and integer r, we denote by S

�r

the set of elements in S of height

at most r: S

�r

= fa 2 S : jjajj � rg.

We begin by proving the essential properties of subroutineEasyCounterexample.

Lemma 7 Let S

i

and S

f

be the initial and �nal values of program variable S on a

call to EasyCounterexample, and let c be the value returned by the subroutine.

Then the following hold:

1. If S

i

is stable then c = \stable" and S

f

is properly stable.

2. If S

i

is not stable, then c is a counterexample for hyp(S

f

) and S

f

�jjcjj

is properly

stable.

14

3. The number of membership queries made during the execution of EasyCounter-

example is at most

�

t+1

2

�

.

Proof:

Part 1: If S

i

is stable, then EasyCounterexample tests every pair a;b 2

terms(S

i

) and discovers that for none of these is a ^ b a counterexample. Thus, for

each such pair is a ^ b added to S. It follows that EasyCounterexample returns

the
ag \stable", and moreover that S

f

is properly stable.

Part 2: If S

i

is not stable, then for some pair a;b 2 terms(S

i

), a ^ b is a

counterexample so the subroutine returns a counterexample c rather than the
ag

\stable". Suppose that a, b and T are as in the subroutine at the point at

which c = a ^ b is returned. To see that S

f

�jjcjj

is properly stable, consider a pair

a

0

;b

0

2 terms(S

f

�jjcjj

) � terms(S

f

). Since c is a counterexample, c 6= a (by Lemma 1)

so max(jja

0

jj; jjb

0

jj) � jjcjj < jjajj. Thus, a

0

;b

0

2 T because of the greedy order in

which elements are tested and added to T . Since EasyCounterexample did not

halt when a

0

;b

0

were tested, a

0

^ b

0

cannot be a counterexample. Thus, a

0

^ b

0

was

added to S

f

at line 9, and therefore, a

0

^b

0

2 S

f

�jjcjj

. Hence, S

f

�jjcjj

is properly stable.

To prove the bound given in part 3 on the number of membership queries, it

su�ces to show that jT j � t at all times. If S

i

is stable, then T � terms(S

i

) so,

by Theorem 2, jT j � jterms(S

i

)j � t. If S

i

is not stable, then T � terms(S

f

�jjcjj

)

and by part 2 of this Lemma, S

f

�jjcjj

is stable; thus, again applying Theorem 2,

jT j � jterms(S

f

�jjcjj

)j � t.

Next, we prove some of the basic properties of AddElement.

Lemma 8 Let S

i

and S

f

be the initial and �nal values of program variable S on a call

to AddElement from LearnPoly; let c

i

and c

f

be similarly de�ned for c. Then

the following hold:

1. c

i

is a counterexample for hyp(S

i

), and the set S

i

�jjc

i

jj

is properly stable;

2. the set S

f

�jjc

f

jj

is properly stable;

3. at most t membership queries are made during the entire execution of the sub-

routine.

Proof: When AddElement was called from LearnPoly, it was passed a parame-

ter c

i

that was obtained either from Equiv or from EasyCounterexample. In the

latter case, part 1 of the lemma follows immediately from part 2 of Lemma 7. In the

former case, the result follows from the assumed properties of the equivalence oracle,

and from the fact that S is properly stable prior to each call to Equiv (by part 1 of

Lemma 7).

For part 2, consider the behavior of the algorithm after the program variable c has

been set to c

f

; this setting either holds initially (if c

i

= c

f

), or occurs at some later

point after executing line 6. In either case, on the next iteration of the outer loop

(lines 2{10), ` = jjc

f

jj, and, on each succeeding execution of the loop, ` is decremented

(since c never changes again). Thus, for each a 2 terms(S

i

) with jjajj � jjc

f

jj, a ^ c

f

15

is at some point tested and found not to be a counterexample. Using part 1 of this

lemma, and since jjc

f

jj � jjc

i

jj, it follows that (S

i

[fc

f

g)

�jjc

f

jj

is stable, and therefore

that S

f

�jjc

f

jj

is properly stable.

Part 3 follows immediately from Theorem 2 since S

i

�jjc

i

jj

is stable and since each

element of terms(S

i

�jjc

i

jj

) is tested at most once. (Note that ` decreases on each

iteration of the outer loop since if a^c is a counterexample as at line 6 then a^c 62 S

i

so jja ^ cjj < jjajj = `.)

Next, we use the preceding results to show that the subroutine AddElement is

called at most nt+1 times, where n is the height of X (i.e., the number of variables if

X is the boolean lattice). This fact will allow us immediately to bound the number of

equivalence queries made, and will be helpful for bounding the number of membership

queries.

Lemma 9 Given access to a target t-sparse polynomial f on a height-n semilattice,

algorithm LearnPoly halts after executing subroutine AddElement at most nt+1

times.

Proof: We prove this lemma by showing that whenever we add a counterexample c

to S at line 11 of AddElementwe increase the number of hypothesis terms of height

at or below jjcjj (i.e., the set terms(S

�jjcjj

) strictly increases in size).

More formally, let U = f1; : : : ; ng � f1; : : : ; tg [f(0; 1)g. We describe below a

procedure for \marking" elements of U . Initially, all elements of U are unmarked.

We show that exactly one element is marked on each execution of AddElement, and

we also show that no element is ever marked twice. Thus, AddElement is executed

at most jU j = nt+ 1 times.

Speci�cally, immediately followingAddElement's execution, we \mark" element

p(c; S) = (jjcjj; jterms(S

�jjcjj

)j) where c and S are as given in the subroutine. (This

marking is not actually performed by the algorithm | we use it merely as an aid in

proving the theorem.)

First, we show that p(c; S) is actually an element of U . By part 2 of Lemma 8, the

set S

�jjcjj

is properly stable. Thus, by Theorem 2, jjterms(S

�jjcjj

)jj � t. So if jjcjj > 0

then p(c; S) is indeed an element of U (i.e., 1 � jjcjj � n and 1 � jjterms(S

�jjcjj

)jj �

t). If jjcjj = 0 then c = ? and terms(S

�jjcjj

) = fcg so p(c; S) = (0; 1).

It remains to show that no element of U is marked twice. Suppose to the contrary

that the same element is marked following two separate calls to AddElement, once

when c = c

1

and S = S

1

, and again later when c = c

2

and S = S

2

. That is,

p(c

1

; S

1

) = p(c

2

; S

2

). Let r = jjc

1

jj = jjc

2

jj.

Note that c

2

2 terms(S

2

) since c

2

was the last counterexample added to S

2

and by

the way we compute hyp(S

2

). Note also that S

1

�r

� S

2

�r

�fc

2

g since the algorithm

never deletes elements from S.

Thus, by Theorem 6,

jterms(S

1

�r

)j � jterms(S

2

�r

� fc

2

g)j:

Since c

2

is not less than any element in S

2

�r

, it follows from the manner in which

the manifest hypothesis is computed that terms(S

2

�r

� fc

2

g) = terms(S

2

�r

)� fc

2

g.

16

Thus, since c

2

2 terms(S

2

),

jterms(S

1

�r

)j � jterms(S

2

�r

)� fc

2

gj = jterms(S

2

�r

)j � 1 < jterms(S

2

�r

)j:

This contradicts that p(c

1

; S

1

) = p(c

2

; S

2

).

Finally, we are ready to prove Theorem 10, the main result of this paper:

Theorem 10 Given access to equivalence and membership queries for a target t-

sparse polynomial f over a �eld F on a height-n semilattice X, the algorithm LearnPoly

halts and outputs a hypothesis equivalent to f in polynomial time after making at most

nt+ 2 equivalence queries and (nt+ 1)(t

2

+ 3t)=2 membership queries.

Proof: As is typically the case for equivalence-query algorithms, the procedure is

automatically correct (in the sense that it outputs a hypothesis equivalent to the

target) if it can be shown to halt after a bounded number of queries.

Since AddElement is executed at least once following each unsuccessful equiv-

alence query, by Lemma 9, the number of equivalence queries is at most nt + 2.

Also, EasyCounterexample is executed exactly once following each execution of

AddElement. Thus, combining Lemmas 7, 8 and 9, we see that the number of

membership queries is at most (nt+ 1)(t+

�

t+1

2

�

) = (nt+ 1)(t

2

+ 3t)=2. Finally, it is

straightforward to verify using the lemmas developed above that the algorithm runs

in polynomial time.

Setting X = f0; 1g

n

we obtain the following immediate theorem.

Theorem 11 Given access to equivalence and membership queries for a target t-

sparse polynomial f on n boolean variables over a �eld F , the algorithm LearnPoly

halts and outputs a hypothesis equivalent to f in polynomial time after making at most

nt+ 2 equivalence queries and (nt+ 1)(t

2

+ 3t)=2 membership queries.

6 Applications and Extensions

In this section, we describe a number of applications and extensions of our main

result.

Multilinear polynomials. We begin by showing that our algorithm can be used

as a subroutine for learning multilinear polynomials when the domain of each variable

is the entire �eld F , rather than f0; 1g.

To prove this, it su�ces to show that any counterexample in F

n

can be used to

derive another counterexample in f0; 1g

n

.

Let f be the target multilinear polynomial, and let h be a hypothesis. Let d =

f � h. Suppose c is a counterexample to h and that there exists some i for which

c

i

62 f0; 1g. We partially evaluate d by �xing all the variables x

j

to be c

j

for j 6= i. We

thus obtain the univariate polynomial d

0

(x

i

) = ax

i

+ b for some a; b 2 F . Clearly, if

d

0

(0) = d

0

(1) = 0 then a = b = 0 contradicting that d

0

(c

i

) 6= 0. Therefore, there exists

y 2 f0; 1g such that d

0

(y) 6= 0. Thus the vector c

0

obtained from c by replacing c

i

with

y is a counterexample to h, and such a c

0

can be found with at most two membership

17

queries. Repeating this process at most n times we produce a counterexample in

f0; 1g

n

.

Thus we have proved the following theorem.

Theorem 12 Given access to equivalence and membership queries for a target t-

sparse, n-variable multilinear polynomial f : F

n

! F over a �eld F , there exists an

algorithm that halts and outputs a hypothesis equivalent to f in polynomial time.

In�nitely many attributes. Our main algorithm was shown to be e�ective for

learning polynomials de�ned on any semilattice of �nite height. The prime example

of such a domain is of course the boolean lattice f0; 1g

n

. Here is another example:

Let A be an in�nite set, and let A = fB � A : jBj � ng be the collection of all

subsets of A of cardinality at most n. Let the collection A be partially ordered by

inclusion (i.e., B � C if and only if B � C). Then A is a semilattice of height n, so

our algorithm can be applied to e�ciently learn a polynomial de�ned on it.

In fact, if we regard the set A as a collection of \attributes," then it becomes

clear that a polynomial on this semilattice is just an ordinary polynomial de�ned

over an in�nite collection of variables (corresponding to the attributes in A), and a

sample point (i.e., an element of A) consists of a set of at most n attributes that

hold for that example. In other words, the problem of learning a polynomial on

this semilattice is exactly the problem of learning an ordinary polynomial in Blum's

\in�nite attribute" model [4], and so we obtain as a corollary to our main result that

polynomials can be exactly identi�ed in the in�nite attribute model with membership

and equivalence queries. Thus, although Blum gives a general technique for converting

a \�nite attribute" algorithm into one in the in�nite attribute model, we obtain this

result for polynomials by the direct argument given above.

Semilattices with in�nite chains. Recall that our proof of the correctness

and e�ciency of our algorithm required that the target polynomial be de�ned on a

semilattice of �nite height. The �nite-height requirement is, in general, necessary

in order to achieve exact identi�cation. For instance, the real interval [0; 1] forms a

semilattice under the usual ordering, but no element of this set (except 0) has �nite

height. It is not hard to see that an adversarial oracle for equivalence and membership

queries can force the learning algorithm to make an in�nite number of queries, even

if the target polynomial f is known to consist of a single term with coe�cient 1 (so

that, for some a 2 [0; 1], f(x) is 1 if x � a and 0 otherwise).

However, if our goal is simply to approximate the target polynomial, then we

can, in many situations, modify our algorithm to handle polynomials de�ned on a

semilatticeX that is not necessarily of �nite height. More speci�cally, let f : X ! F

be the target polynomial of sparcity t, and let S � X be a �nite sample labeled by

f . We claim that, given access to a membership oracle for f , our algorithm can be

used to e�ciently construct a hypothesis polynomial h of sparcity at most t that is

consistent with f on S. The running time of the procedure is polynomial in t and jSj

(and any other parameters that may be relevant to the particular problem at hand).

To see that this is so, let X

0

be the subsemilattice of X obtained by closing the

set S under the meet operation; that is, X

0

consists of all elements of X which are

18

the meet of a subset of the elements of S. It is not hard to show then that X

0

is

a �nite semilattice of height at most jSj. Further, the target polynomial f can be

replaced by a polynomial f

0

: X

0

! F whose terms are all in X

0

and that equals f

on all elements of X

0

. (Speci�cally, f

0

can be derived from f by replacing each term

�

t

by �

t

0

where t

0

is the meet of the set fa 2 X

0

: t � ag.) For our simulation, we

regard f

0

as the target polynomial, X

0

as the target semilattice, and we simulate the

equivalence oracle by responding to each equivalence query with any element of S

on which f (or, equivalently, f

0

) disagrees with the conjectured hypothesis (or with

the \equivalent"
ag if no such element exists). By the arguments above, and by

Theorem 10, this simulation will produce a hypothesis of sparcity at most t that is

consistent with f on S in time polynomial in t and jSj.

In many situations, such an algorithm for e�ciently �nding a \small" hypothesis

consistent with a given sample is su�cient to guarantee e�cient PAC-learnability.

For example, if X = R

m

is partially ordered by domination (so that a � b if and

only if a

i

� b

i

for i = 1; : : : ;m), and if F is, say, R or GF(2), then a uniform

convergence argument, such as those given by Blumer et al. [6] and Haussler [14],

implies that a \small" hypothesis consistent with a randomly chosen sample will,

with high probability, be a good approximation of the target function. Thus, by

the arguments above, such polynomials can be e�ciently PAC-learned from random

examples given access to a membership oracle.

Functions representable by sparse polynomials. Finally, returning to the

boolean lattice, we make some remarks on the sorts of functions that can be repre-

sented by sparse polynomials.

As noted brie
y in Section 2, every function g : f0; 1g

`

! F can be represented by

a 2

`

-sparse polynomial. Call such a function `-arbitrary. Then clearly any `-arbitrary

function can be learned by our algorithm in time polynomial in 2

`

. More generally,

we can replace each variable of g with a monomial x

a

for arbitrary a 2 f0; 1g

n

. The

resulting function g(x

a

1

; : : : ;x

a

`

), when \multiplied out," can be represented by a 2

`

-

sparse polynomial over x

1

; : : : ; x

n

. Generalizing further, we see that the `-arbitrary

functions can be added together to obtain a function of the form

t

X

i=1

g

i

(x

a

i1

; : : : ;x

a

i`

)

which can be represented by a t2

`

-sparse polynomial on n boolean variables. Thus,

such functions can be learned in time polynomial in n, t and 2

`

.

As a speci�c example of this technique, we can show that logarithmic-depth de-

cision trees can be learned in polynomial time: For each leaf i, let p

i

(x) be the value

of the leaf node if it is reached on input x, and 0 otherwise. The function computed

by the decision tree is then

P

t

i=1

p

i

(x) where t is the number of leaves in the tree.

Since p

i

(x) can be viewed as an `-arbitrary function on the ` variables occurring along

the path to leaf i, this shows that the computed function can be represented by a

t2

`

-sparse polynomial. Thus, the decision tree can be exactly identi�ed in polynomial

time if its depth ` is logarithmic.

The same result holds if each node's decision function is replaced by an arbitrary

(monotone) monomial, rather than a single variable. Thus, we have shown that

19

logarithmic-depth decision trees in which each node is decided by a monomial can be

exactly identi�ed using equivalence and membership queries. Although it was known

that this was possible for (ordinary) logarithmic-depth decision trees by the results of

Kushilevitz and Mansour [17] and Bshouty [7], it appears that this result could not

have been derived using previous methods for the case in which each decision node is

a monomial.

7 Conclusions and Open Problems

We have shown that sparse polynomials over a �eld F de�ned on several boolean

variables can be exactly identi�ed using membership and equivalence queries. We

have argued that this result depends largely on the lattice structure of the boolean

domain, and that the result holds for a more generalized notion of polynomial de�ned

on an arbitrary semilattice with no in�nite chains. Among our extensions is a proof

that our algorithm can be used to e�ciently learn multilinear polynomials when the

domain of each variable is all of F .

There are many open problems and possible directions for future research. For

starters, we would like to know if our algorithm can be made robust to handle noise

or errors in the data it is receiving. In this regard, we have some preliminary results

which indicate that the algorithm can be modi�ed to handle a small but signi�cant

level of random misclassi�cation noise. (See also the related work of Ar et al. [2] and

Gemmell and Sudan [12].)

Our algorithm is only able to learn functions that can be represented exactly by

sparse polynomials. The algorithm would be much more practical if we could extend

it to handle functions that can only be approximated by a sparse polynomial. This is

an important open problem.

It would also be quite interesting to extend our algorithm to learn polynomials

in which each \term" is a conjunction of literals, some of which are negated. For

instance, for GF(2), this is the problem of learning a boolean formula that consists

of an xor of several monomials, each of which is a conjunction of negated or un-

negated variables (rather than exclusively unnegated variables as was considered in

this paper).

A similar problem is that of learning arbitrary polynomials (not necessarily mul-

tilinear) on the unrestricted domain F

n

. In this regard, we have some preliminary

results indicating that this is possible when each term of the target polynomial in-

cludes a limited number of variables of degree greater than one.

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Infor-

mation and Computation, 75:87{106, November 1987.

20

[2] Sigal Ar, Richard J. Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reconstruct-

ing algebraic functions from mixed data. In 33rd Annual Symposium on Foun-

dations of Computer Science, pages 503{512, October 1992.

[3] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multi-

variate polynomial interpolation. In Proceedings of the Twentieth Annual ACM

Symposium on Theory of Computing, pages 301{309, May 1988.

[4] Avrim Blum. Learning boolean functions in an in�nite attribute space. Machine

Learning, 9(4):373{386, 1992.

[5] Avrim Blum and Mona Singh. Learning functions of k terms. In Proceedings of

the Third Annual Workshop on Computational Learning Theory, pages 144{153,

August 1990.

[6] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. War-

muth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the

Association for Computing Machinery, 36(4):929{965, October 1989.

[7] Nader H. Bshouty. Exact learning via the monotone theory. In 34th Annual

Symposium on Foundations of Computer Science, November 1993.

[8] Michael Clausen, Andreas Dress, Johannes Grabmeier, and Marek Karpinski.

On zero-testing and interpolation of k-sparse multivariate polynomials over �nite

�elds. Theoretical Computer Science, 84:151{164, 1991.

[9] Andreas Dress and Johannes Grabmeier. The interpolation problem for k-sparse

polynomials and character sums. Advances in Applied Mathematics, 12:57{75,

1991.

[10] A. D�ur and J. Grabmeier. Applying coding theory to sparse interpolation. SIAM

Journal on Computing, 22(4):695{704, August 1993.

[11] Paul Fischer and Hans Ulrich Simon. On learning ring-sum-expansions. SIAM

Journal on Computing, 21(1):181{192, February 1992.

[12] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials.

Information Processing Letters, 43(4):169{174, September 1992.

[13] Dima Yu. Grigoriev, Marek Karpinski, and Michael F. Singers. Fast parallel al-

gorithms for sparse multivariate polynomial interpolation over �nite �elds. SIAM

Journal on Computing, 19(6):1059{1963, December 1990.

[14] David Haussler. Decision theoretic generalizations of the PAC model for neural

net and other learning applications. Information and Computation, 100(1):78{

150, 1992.

[15] Lisa Hellerstein and Manfred Warmuth. Interpolating GF[2] polynomials. Un-

published manuscript.

21

[16] I. N. Herstein. Topics in Algebra. Wiley, second edition, 1975.

[17] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier

spectrum. SIAM Journal on Computing, 22(6):1331{1348, 1993.

[18] Yishay Mansour. Randomized interpolation and approximation of sparse poly-

nomials. In Automata, Languages and Programming: 19th International Collo-

quium, pages 261{272, July 1992.

[19] Ron M. Roth and Gyora M. Benedek. Interpolation and approximation of sparse

multivariate polynomials over GF(2). SIAM Journal on Computing, 20(2):291{

314, April 1991.

[20] L. G. Valiant. A theory of the learnable. Communications of the ACM,

27(11):1134{1142, November 1984.

[21] Herbert S. Wilf. Hadamard determinants, M�obius functions, and the chromatic

number of a graph. Bulletin of the American Mathematical Society, 74(5):960{

964, September 1968.

[22] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and

Algebraic Computation, pages 216{226. Springer-Verlag, June 1979.

[23] Richard Zippel. Interpolating polynomials from their values. Journal of Symbolic

Computation, 9:375{403, 1990.

Appendix

In this appendix, we present an alternative proof of Theorem 2 based on the compu-

tation of the rank of certain matrices. Recall that the rank of a matrix A is equal to

the maximum number of linearly independent columns of the matrix A.

Alternative Proof of Theorem 2: It su�ces to prove the theorem in the case that

X is �nite. For if X is in�nite, then we can replace X by X

0

, the �nite subsemilattice

that is generated by closing the �nite set

S [fa :

~

f(a) 6= 0g

under the meet operation. Clearly, if Theorem 2 holds for X

0

, then it holds for X as

well. Thus, we assume henceforth without loss of generality that X is �nite.

The high level idea of this proof is to construct two matrices G and

^

G for which

we can argue that:

1. rank(G) = t, the sparcity of f ;

2. rank(

^

G) = jterms(S)j, the sparcity of hyp(S); and

3. rank(

^

G) � rank(G).

22

Obviously, these three facts together su�ce to prove the theorem. The method of

constructing these matrices is inspired by a technique used by Wilf [21].

Let the r = jXj elements of X be indexed a

1

; : : : ;a

r

in a manner consistent with

the partial ordering �, i.e., in such a way that if i > j then a

i

6� a

j

. We can then

represent the partial order � by an r � r matrix Z = (z

ij

) where

z

ij

=

(

1 if a

i

� a

j

0 otherwise.

Then Z is upper triangular (i.e., z

ij

= 0 if i > j) and all diagonal entries z

ii

are equal

to 1. Thus, Z has determinant 1, and so it is nonsingular.

Next, let D = (d

ij

) be the r � r diagonal matrix whose diagonal elements are

given by the coe�cients of f . That is,

d

ij

=

(

~

f(a

i

) if i = j

0 otherwise.

Note that the rank of D is equal to the number of non-zero diagonal entries, which

is exactly t, the sparcity of f .

To complete the construction of G, we �nally let G = (g

ij

) = Z

T

DZ. Since Z is

nonsingular,

rank(G) = rank(D) = t: (10)

Also, we can explicitly compute each entry of G as follows:

g

ij

=

X

k;`

z

ki

d

k`

z

`j

=

X

k

z

ki

z

kj

~

f (a

k

):

Note that

z

ki

z

kj

=

(

1 if a

k

� a

i

^ a

j

0 otherwise.

Thus,

g

ij

=

X

a2X

a�a

i

^a

j

~

f (a) = f(a

i

^ a

j

):

We use a similar construction for the matrix

^

G. First, let

T = fi : a

i

2 terms(S)g = ft

1

; : : : ; t

s

g

where t

1

< � � � < t

s

, and s = jterms(S)j. Let

^

Z = (ẑ

ij

) be the T � T submatrix

of Z (i.e., ẑ

ij

= z

t

i

t

j

). Then the same argument used above shows that

^

Z is also

nonsingular.

Next, we de�ne

^

D = (

^

d

ij

) to be the s�s diagonal matrix whose diagonal elements

are the coe�cients of h = hyp(S). That is,

^

d

ij

=

(

~

h(a

t

i

) if i = j

0 otherwise.

23

Since each diagonal element is non-zero,

^

D has full rank s.

Finally, we let

^

G = (ĝ

ij

) =

^

Z

T

^

D

^

Z. As before, because

^

Z is nonsingular,

rank(

^

G) = rank(

^

D) = s = jterms(S)j: (11)

Moreover, we can compute the entries of

^

G explicitly as before to obtain:

ĝ

ij

=

X

a2terms(S)

a�a

t

i

^a

t

j

~

h(a) = h(a

t

i

^ a

t

j

) = f(a

t

i

^ a

t

j

)

where the last equality follows from our assumption of stability.

Thus, the matrix

^

G is exactly the T � T submatrix of G, which implies that

rank(

^

G) � rank(G): (12)

The theorem follows immediately from Equations (10), (11) and (12).

24

