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Abstract. This work focuses on algorithms which learn from examplegedorm multiclass text and speech

categorization tasks. Our approach is based on a new andwexgfamily of boosting algorithms. We describe
in detail an implementation, called BoosTexter, of the newdting algorithms for text categorization tasks. We
present results comparing the performance of BoosTextka @mumber of other text-categorization algorithms on
a variety of tasks. We conclude by describing the applicatibour system to automatic call-type identification

from unconstrained spoken customer responses.

1. Introduction

Text categorization is the problem of classifying text doemts into categories or classes.
For instance, a typical problem is that of classifying newiglas by topic based on their
textual content. Another problem is to automatically idgnthe type of call requested
by a customer; for instance, if the customer says, “Yes, lldibke to charge this call to
my Visa,” we want the system to recognize that this is a ogdtiard call and to process
the call accordingly. (Although this is actually a speeeltegorization problem, we can
nevertheless apply a text-based system by passing therspedq@onses through a speech
recognizer.)

In this paper, we introduce the use of a machine-learninignigoe called boosting to
the problem of text categorization. The main idea of bogsrto combine many simple
and moderately inaccurate categorization rules into desihgghly accurate categorization
rule. The simple rules are trained sequentially; concélytuzach rule is trained on the
examples which were most difficult to classify by the prengdules.

Our approach is based on a new and improved family of boostgmyithms which we
have described and analyzed in detail in a companion papbaffe & Singer, 1998).
This new family extends and generalizes Freund and SchepidaBoost algorithm (Fre-
und & Schapire, 1997), which has been studied extensivedyverich has been shown
to perform well on standard machine-learning tasks (Braini®98; Drucker & Cortes,
1996; Freund & Schapire, 1996, 1997; Maclin & Opitz, 1997 rifllaeantu & Dietterich,
1997; Quinlan, 1996; Schapire, 1997; Schapire, Freund|eBa& Lee, 1998). The pur-
pose of the current work is to describe some ways in whichtapsan be applied to the
problem of text categorization, and to test its performamtative to a number of other
text-categorization algorithms.

Text-categorization problems are usuaifylticlassin the sense that there are usually
more than two possible categories. Although in some apics there may be a very
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large number of categories, in this work, we focus on the aas¢éhich there are a small
to moderate number of categories. It is also common for categorization tasks to be
multi-label meaning that the categories are not mutually exclusivédnabthe same doc-
ument may be relevant to more than one category. For insténgéographic medical
articles are routinely given multiple Medical Subject Ird&eSH) categories when en-
tered into Medline, the national bibliographic searchatot#ive which contains more than
twenty million documents. While most machine-learningtsyss are designed to handle
multiclass data, much less common are systems that canehamdii-label data. While
numerous categorization algorithms, suchk:agearest neighbor, can be adapted to multi-
label categorization problems, when machine-learningahdr approaches are applied
to text-categorization problems, a common technique has be decompose the multi-
class, multi-label problem into multiple, independentasinclassification problems (one
per category).

In this paper, we adopt a different approach in which we useeixtensions of AdaBoost
that were specifically intended for multiclass, multi-laata. In the first extension, the
goal of the learning algorithm is to predict all and only dlltbe correct labels. Thus,
the learned classifier is evaluated in terms of its abilitgredict a good approximation of
the set of labels associated with a given document. In thenseextension, the goal is to
design a classifier thaanksthe labels so that the correct labels will receive the highes
ranks. We next describe BoosTexter, a system which embéalieversions of boosting
based on these extensions, and we discuss the implemeritsies that arise in multi-
label text categorization.

There has been voluminous work done on text categorizatioluding techniques based
on decision trees, neural networks, nearest neighbor mstiRocchio’s method, support-
vector machines, linear least squares, naive Bayes, adeebmethods and more. (See,
for instance, (Apté, Damerau, & Weiss, 1994; Biebricherhif- Lustig, Schwantner, &
Knorz, 1988; Cohen & Singer, 1996; Field, 1975; Fuhr & Pfeil®94; Koller & Sahami,
1997; Lewis & Ringuette, 1994; Moulinier, Raskinis, & Gani, 1996; Ng, Goh, & Low,
1997; Yang, 1994).) It would be impossible for us to compareadgorithms to all of the
previous methods. Instead, we compare to four very diffarethods which we believe
are representative of some of the most effective techniguatable, and report results on
several different tasks. Our experiments show that, usmgwber of evaluation measures,
our system’s performance is generally better than the alyarithms, sometimes by a
wide margin.

To further compare our algorithm to other methods, we testegherformance of Boos-
Texter on a standard benchmark problem so that performandd be compared directly
with a large body of results reported in the literature. Wecijally focus on a recent
study by Yang (1999) who conducted several experimentsief&mchmark and who also
surveyed many results reported by other authors. BoosTeperformance places it at the
very top of all the methods included in Yang's study.

Finally, we discuss the application of BoosTexter to an mnattic speech-categorization
task and compare the performance of our system to a previgoristam which was specif-
ically designed for this task.
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2. Preliminaries

In this section, we describe the formal setting we use toystudlti-label text categoriza-
tion.

Let X’ denote the domain of possible text documents andl le¢ a finite set of labels or
classes. We denote the size)oby k = |Y/|.

In the traditional machine-learning setting, each documegr X is assigned a single
classy € Y. The goal then, typically, is to find a classifigr: X — Y which minimizes
the probability thay # H (x) on a newly observed example, y). In the multi-label case,
each document € X may be assigned multiple labelsjh For example, in a multiclass
news-filtering problem in which the possible classesNees, Fi nance andSport s,

a document may belong to bolews andFi nance. Thus, a labeled example is a pair
(z,Y) whereY C Y is the set of labels assigned 4o The single-label case is a special
case in whichHY'| = 1 for all observations.

ForY C )Y, let us definé’[¢] for £ € Y to be

C[4liftey
W]—{—1 if0g Y,

In this paper, we will be primarily interested in classifierBich produce aanking of
the possible labels for a given document with the hope thatafpropriate labels will
appear at the top of the ranking. To be more formal, the goldarhing is to produce a
function of the formf : X x J — R with the interpretation that, for a given instance
the labels iny should be ordered according foz, -). That is, a labet; is considered to
be ranked higher thay if f(z,¢1) > f(z,£2). If Y is the associated label set forthen
a successful learning algorithm will tend to rank label&’irnigher than those not i’
Precise evaluation measures are discussed in Sec. 5.

Finally, to simplify the notation, for any predicate let [x] be 1 if = holds and) other-
wise.

3. Boosting algorithmsfor multi-label multiclass problems

In a companion paper (Schapire & Singer, 1998), we introdwcel analyzed two new
boosting algorithms for multiclass, multi-label classifion problems. Here, we review
the two algorithms, discuss four versions of these algorthand describe an efficient
implementation of the algorithms for the problem of texegatrization.

The purpose of boosting is to find a highly accurate classificarule by combining
many weak or base hypothesegach of which may be only moderately accurate. We
assume access to a separate procedure callegethielearneior weak learning algorithm
for computing the weak hypotheses. The boosting algorithdsfa set of weak hypotheses
by calling the weak learner repeatedly in a series of roufiti@se weak hypotheses are
then combined into a single rule called fireal or combined hypothesis

In the simplest version of AdaBoost for single-label clasation, the boosting algorithm
maintains a set of importance weights over training exampléese weights are used by
the weak learning algorithm whose goal is to find a weak hyggithwith moderately low
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Given: (z1,Y1),..., (xm, Ym) Wherez; € X,Y; C Y
Initialize Dy (¢, £) = 1/(mk).

Fort=1,...,7:
o Pass distributiol; to weak learner.
e Get weak hypothesis : ¥ x Y — R.
e Choosen; € R.
e Update:
Dy(1, £ —ay Yi[€] he(x;, £
Dt+1(i,£) — t(la )exp( Qg [ ] t(x ))

Zy
whereZ; is a normalization factor (chosen so thiat, , will be a distribution).

Output the final hypothesis:

Fla, )= ath(z, ).

Figure 1. The algorithm AdaBoost.MH.

error with respect to these weights. Thus, the boostingihgo can use these weights to
force the weak learner to concentrate on the examples whichaadest to classify.

As we will see, for multiclass, multi-label problems, it ispaopriate to maintain instead
a set of weights over training examplasd labels As boosting progresses, training ex-
amples and their corresponding labels that are hard togiredirectly get incrementally
higher weights while examples and labels that are easy $sityaget lower weights. For
instance, for the news classification problem, it might bgyda classify a document as a
news item but hard to determine whether or not it belongsedittance section. Then, as
boosting progresses the weight of the laReinvs for that document decreases while the
weight of Fi nance increases. The intended effect is to force the weak lea@dgugyithm
to concentrate on examples and labels that will be most lwgglefd the overall goal of
finding a highly accurate classification rule.

3.1. AdaBoost.MH

Our first boosting algorithm for multiclass multi-label stdfication problems, called
AdaBoost.MH, is shown in Fig. 1. LetS be a sequence of training examples
((x1,Y1), ..., (zm, Ym)) Where each instancg € X and eachy; C Y. As described
above, AdaBoost.MH maintains a set of weights as a distohud, over examples and
labels. Initially, this distribution is uniform. On eachuied¢, the distributionD; (together

with the training sequencg) is passed to the weak learner who computes a weak hypoth-
esish:. The output of the weak learner is a hypothésis t' x J — R. We interpret

the sign ofh(x, £) as a prediction as to whether the labés or is not assigned to (i.e.,
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a prediction of the value df [¢]). The magnitude of the predictidh(z, ¢)| is interpreted
as a measure of “confidence” in the prediction. The precis¢ giothe weak learner is
described below, as are the weak learners used in our exg@sm

A parametery, is then chosen and the distributibhn is updated. We discuss the choice
of «; below. In the typical case that; is positive, the distributiorD, is updated in a
manner that increases the weight of example-label pairstvdre misclassified by; (i.e.,
for whichY;[¢] andh.(z;, £) differ in sign). The final hypothesis ranks documents using a
weighted vote of the weak hypotheses.

This algorithm is derived using a natural reduction of thdtidiass, multi-label data
to binary data. Under this reduction, each exaniplgV’) is mapped td: binary-labeled
examples of the fornf(z, ¢), Y'[(]) for all ¢ € Y; that is, the instance or “document” part
of each derived example is formally a p&ir, £), and the binary label associated with this
instance i€"[¢]. In other words, we can think of each observed labelsas specifying:
binary labels (depending on whether a lab# or is not included irt”), and we can then
apply binary AdaBoost to the derived binary data. The atbarithat results from such a
reduction is equivalent to AdaBoost.MH.

This view of AdaBoost.MH also leads to a simple analysis.c8ppally, we have proved
(Schapire & Singer, 1998) a bound on the empiridamming los®f this algorithm, i.e.,
the fraction of examples and labels for which the sign off(z;, ¢) differs from Y;[¢].
We showed that the Hamming loss of this algorithm is at n}i{)g:tl Z;, whereZ; is the
normalization factor computed on roundThis upper bound can be used in guiding both
our choice ofa; and the design of our weak learning algorithm. Togethesélaoices
should be geared on each rountdward the minimization of

m

Zy = ZZ Dt(i,ﬁ) exp (—Ozt Yi[] ht(xi,ﬁ)) . 1)

=1 L€y

In Sec. 4, we describe the methods used for choosingnd the implementation of the
weak learning algorithm for text categorization.

Note that the space and time-per-round requirements of 8dstBVIH areO(mk), not
including the call to the weak learner.

3.2. AdaBoost.MR

We next describe our second boosting algorithm called AdaBMR. Whereas Ada-
Boost.MH is designed to minimize Hamming loss, AdaBoost.lgiResigned specifically

to find a hypothesis whictanksthe labels in a manner that hopefully places the correct
labels at the top of the ranking.

With respect to a labeled observatign Y'), we focus now only on the relative ordering
of thecrucial pairs/y, £, forwhichf, € Y and/; € Y. A classification rulg® misordersa
crucial pairty, ¢1 if f(xz,¢1) < f(z, {y) so thatf fails to rank¢; abovety. Our goal now is
to find a functionf with a small number of misorderings so that the labels iare ranked
above the labels not iri. Put another way, our goal is to minimize the average fraatio
crucial pairs which are misordered, a quantity that we tedléampiricaranking loss
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Given: (z1,Y1),..., (xm, Ym) Wherez; € X,Y; C Y
Initialize D (i, 4o, (1) = { é/(m Y 1Y =Yi|) if by € Y andl €Y

else.
Fort=1,...,7:
e Train weak learner using distributidp .
e Get weak hypothesis : ¥ x Y — R.
e Choosey; € R.
e Update:

Dt(iaEOagl) €Xp (%at(ht(xiago) - ht(£la£1)))

Dip1(i, 4o, 1) = 7
t

whereZ; is a normalization factor (chosen so thiat, , will be a distribution).

Output the final hypothesis:

Fla, )= ath(z, ).

Figure 2. The algorithm AdaBoost.MR.

m

1 1

m 2 Y~ Vi {(lo, 61) € (Y = Yi) x Vi« fa, 1) < f(z,6)}

(We assume that; is never empty nor equal to all ¢f for any instance. If there are such
instances in the training set we can simply discard thenedimere is no ranking problem
to be solved in this case and they do not carry any information

AdaBoost.MR is shown in Fig. 2. We now maintain a distribotle, over{1, ..., m} x
Y x Y and denote the weight for instanee and the pairty, 1 by D: (%, £y, £1). This
distribution is zero, however, except on the relevantesgl, ¢y, ¢1) for which ¢y, ¢, is a
crucial pair relative tdz;, Y;).

As before, weak hypotheses have the form: X x Y — R; we think of these as
providing a ranking of labels as described above. The updédtds a bit new. Let,, ¢,
be a crucial pair relative tor;, Y;) (recall thatD; is zero in all other cases). Assuming
momentarily thaty, > 0, this rule decreases the weight (¢, £, ¢1) if h; gives a correct
ranking G (z;, £1) > he (x4, o)), and increases this weight otherwise.

As for the Hamming loss, it can be shown (Schapire & Singe®98) $hat the empirical
ranking loss of this algorithm is at mo}§[tT:1 Z. Thus, as before, our goal in choosing
andh; should be minimization of

Zy =" Di(i,lo, 1) exp (2a(he(i, o) — he(xi, (1)) (2)
1,40,41

We again defer the description of the technique used foipinipose to Sec. 4.
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Given: (z1,Y1),..., (xm, Ym) Wherez; € X,Y; C Y
Initialize vy (i,€) = (m - |Y;| - |¥ = Y;|)~1/?
Fort=1,...,7:

e Train weak learner using distributidn, (as defined by Eq. (3))
e Get weak hypothesis : ¥ x Y — R.
e Choosey; € R.
e Update:
) vt (4, ) exp (—%at Yi[] ht(a:i,ﬁ))
) =
vt-l—l(la ) \/Z
where

7= Y || 3 w0 exp (arhila ) (Zw(i,aexp<—%atht<xi,ﬂ>>)

i gy, LY,

Output the final hypothesis:

F@,0) =" achi(x,0).

Figure 3.A more efficient version of AdaBoost.MR: on each round of Himgsand for each example, the running
time is linear in the number of label®(k)).

This algorithm is somewhat inefficient when there are mamglgsince, naively, we
need to maintaif;| - | — Y;| weights for each training exampl{e;, ¥;), and each weight
must be updated on each round. Thus, the space complexitynaggher-round complex-
ity can be as bad a§mk?). In fact, the same algorithm can be implemented using only
O(mk) space and time per round. By the nature of the updates, wehcan(Schapire &
Singer, 1998) that we only need to maintain weightsver {1, ..., m} x Y. To do this,
we maintain the condition that i, ¢; is a crucial pair relative t¢z;, Y;), then

Dt(i,go,gl) = Ut(i,go) . Ut(i,gl) (3)

at all times. (Recall thaD;, is zero for all other triplesi, ¢y, ¢1).) The pseudocode for
this implementation is shown in Fig. 3. Note that all spacpireements and all per-round
computations aré(mk), with the possible exception of the call to the weak learntictv
is discussed in the next section.
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4. Weak hypotheses for text categorization

So far, we left unspecified the actual form and implementadicthe weak learner, as well
as the choice of the parametey. In this section, we describe four implementations of
weak learners, three for AdaBoost.MH and one for AdaBodRt.Rur system for multi-
label text categorization, called BoosTexter, can be uséd any of the four methods
described below.

Boosting is meant to be a general purpose method that camitgirmed with any classi-
fier, and in practice it has been used, for instance, withsitatitrees and neural nets. In
this paper, however, we focus on the use of boosting with senple classifiers. Specif-
ically, for all of the methods we use, the weak hypotheseeg lilag same basic form as
a one-level decision tree. The test at the root of this treessnple check for the pres-
ence or absence of a term in the given document. All words aird pf adjacent words
are potential terms.Based only on the outcome of this test, the weak hypothesgita
predictions and confidences that each label is associatediveé document. For example,
going back to the news categorization example, a possitsiredan beBill Clinton, and the
corresponding predictor is: “If the terBill Clinton appears in the document then predict
that the document belongs Mews with high confidence, t&i nance with low confi-
dence, and that it does not belond3por t s with high confidence. If, on the other hand,
the term does not appear in the document, then predict tidaiet not belong to any of
the classes with low confidence.” Fig. 4 shows the first séweeak hypotheses actually
found by a version of AdaBoost on one of the datasets testedifethe paper.

Formally, denote a possible term by and let us define (abusively) € » to mean that
w occurs in document. Based on the term, we will be interested in weak hypothkses
which make predictions of the form:

h(x,0) = { cor ifwew

cyy fwéz
where the:;,’s are real numbers. The three weak learners we describedaBdost.MH
differ only with respect to possible restrictions which wiage on the values of these
numbers.

Our weak learners search all possible terms. For each teaimwest;, are chosen as
described below, and a score is defined for the resulting Wgpkthesis. Once all terms
have been searched, the weak hypothesis with the lowest sceelected and returned by
the weak learner. For AdaBoost.MH, this score will alwaysabheexact calculation of,
as defined in Eq. (1) since, as noted in Sec. 3.1, minimizaticf is a reasonable guiding
principle in the design of the weak learning algorithm. FalaBoost.MR, we know of no
analytical solution for the problem of minimizing.. Instead, an approximation df; is
used as described below.

4.1. AdaBoost.MH with real-valued predictions

For our first weak learner, we permit unrestricted real-edlpredictions;,. In our exper-
iments, we call this versioreal AdaBoost.MH
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Round Term EARN ACQ COM ECON GNRL ENRG

1 VS n

' | | | | I I

- — — - - 3

2 tonnes - - n - - _

3 company —_ —_ _ - - _

4 oil _ - — — _ m
5 cts -

6 agriculture - u _ - -

7 shares — - - - - -

8 trade - - — - —_ -
9 dividend

= = § ® ® x

10 money market — — — : ; —

Y T ¥ ¥ |

Figure 4. The first ten weak hypotheses found when real AdaBoost.MHd. (&&) is run on the entire Reuters-
21450 dataset as described in Sec. 6.5. Each weak hypottassise following form and interpretation: if the
term associated with the weak hypothesis occurs in the gleeument, then output the first row of values;
otherwise, output the second row of values. Here, each vadpeesented graphically as a bar, gives the output of
the weak hypothesis for one of the classes. For instanceighk hypothesis found on the first round of boosting
tests on the terms If present, a positive value is output fEARN and negative values are output for all of the
other classes. If not present, weakly negative values apribfor all classes.

With minimization of Z; in mind, the values;, should be calculated as follows for a
given termw: Let Xo = {2 : w € z} andX; = {z : w € «}. Given the current
distributionD;, we calculate the following for each possible labefor j € {0, 1}, and
forbe {—1,+1}:

wit = iDt(i,E)[[xi €X; AV =1]. (4)

i=1
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For readability of notation, we abbreviate the subscriptsand —1 in Wffl and W7,
writing insteadW;{Z andW?*. In Words,W;{Z (sz) is the weight (with respect to the
distributionD,) of the documents in partitioX; which are (are not) labeled iy

It can be shown (Schapire & Singer, 1998) thiatis minimized for a particular term by
choosing

wi
Cjt = %ln (W—j—z) s (5)
and by settingv; = 1. These settings imply that

Zy=2 > S witwit (6)

je{0,1}Ley

Thus, we choose the termfor which this value of7; is smallest.

In fact, it may well happen that’** or Wff is very small or even zero, in which case
c;e as defined in Eq. (5) will be very large or infinite in magnituttepractice, such large
predictions may cause numerical problems, and there makiduedtical reasons to sus-
pect that large, overly confident predictions will incre#ise tendency to overfit. To limit
the magnitudes of the predictions, in our implementatioa,use instead the “smoothed”
values

Wit +e
Cjt = %ln (Wjﬁi_i_g . (7)

In our experiments, we set= 1/mk. Since bothV’‘ and Wff are bounded between
and1, this has the effect of boundirig;,| by roughlys In(1/¢).

4.2. AdaBoost.MH with real-valued predictions and abstain

The method described above assigns confidence values beth avkerm appears in a
document and when it does not. Thus, it employs a tacit assomihat the absence of a
term carries information about the possible classes a destmay belong to. However,
given our intuitive knowledge about the problem, we may wisheject this assumption
and force the weak hypothesis to abstain whenever the gérem does not appear in a
document. This can be accomplished simply by forcing eacikvypothesis to output
a confidence value of zero for documents which do not contengiven term. In our
experiments, we call this versioeal abstaining AdaBoost.MH

For a given termu, this weak learner chooses predictiensfor documents which con-
tain w exactly as before. (In our implementation, we also smoatketvalues as before.)
For the rest of the documents, the prediction valyesre all set to zero. Hence, the term
w has no influence on the classification if it does not appednaérdbcument. As before,
oy IS set tol.

Let
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Wo= Y Di(i,0)

i:x;€Xo

be the weight of all the document that dotcontainw. Then it can be shown (Schapire &
Singer, 1998) that

Zy=Wo+2) (/WHW, (8)

Ley

and, as before, on each round we choose a teffor which the valueZ; is smallest.

One advantage of this weak learner over the first one is aroweprent in the running
time as we need to consider only the documents that includea termw when comput-
ing Z;. Since, typically, the number of documents that include tivial term is only a
small fraction of the training data, this version is in preetl 5% faster than the previous
one. Furthermore, in most of the experiments described én@ehe performance of the
two versions is comparable.

4.3. AdaBoost.MH with discrete predictions

The next weak learner forces the predictiopsof the weak hypotheses to be either or
—1. This is the more standard setting in which predictions diocaay confidences. We
call this versiordiscrete AdaBoost.MH

With this restriction on the range of the weak hypotheses;avestill minimizeZ; for a
given termw using the following method. With the same notation define8eg. 4.1, we
set

cje = sign (W] - W)

which can be viewed as a (weighted) majority vote over exampi blockX; for each
label?. Let

n= Y3 |- w|. ©

je{0,1} Ley

Then it can be shown (Schapire & Singer, 1998) that, for thrpg@aes of minimizing’;,
we should choose

1
at:%ln<1+:t)
— Tt

giving

ZtI l—rtz
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4.4. AdaBoost.MR with discrete predictions

We next describe a weak learner for AdaBoost.MR. As notecin 3.2, we would like to
minimize 7, as defined in Eq. (2). Unfortunately, the exact minimizatibthis quantity
is not as straightforward as it was for AdaBoost.MH. We tf@esonly consider discrete
predictions in{—1, 41}, and we also use an approximation fgras a score, rather than
an exact computation. We call thisscrete AdaBoost.MR

For a given hypothesisg,, let

Ty = % Z Dt(iaEOagl)(h(xiagl) - h($la£0))
i,40,01

Then, similar to the analysis for discrete AdaBoost.MHait e shown that, < /1 — 2
if we choose

at:§1n<1+”). (10)

1—rt

Since we do not know how to efficiently minimizg exactly, we instead find a weak
hypothesis which minimizes the upper boupd — r?. We use this upper bound as our
score in choosing the best weak hypothesis.

For efficiency, it is important to note that the quantitycan be computed efficiently in
terms of the weights; (defined in Eq. (3)). Let

di(i 0) = Fu(i0) > w(il).

27 Vi[5

Then it can be shown (Schapire & Singer, 1998) that

re= > di(i, 0) Vil h(ai, ).
il

Thus, for a particular termy, we should choose

¢js = sign ( S dii ) W])

1T, EX;

which gives

re= > 3 | dili, ) Y[ (11)

J€{0,1} LeY |iwieX;

We thus choose the terma which maximizes this quantity, and we assign predictions
correspondingly. The parametey is set as in Eq. (10).

The search for a good weak hypothesis can be very time congumiien the training
corpus is large. We therefore use an inverted list that stimreeach term (word, bigram,



A BOOSTING-BASED SYSTEM FOR TEXT CATEGORIZATION 13

Table 1.Summary of the properties of the four weak learners for mlakis multi-label text categorization.

Version | Loss Prediction o
wit
Real MH Hamming c;, = 11In ij[ (j € {0,1}) 1
- Wll

Real & abstaining MH| Hamming co =0 ¢y = 2 1n #{7 1
Discrete MH Hamming ¢, = sign (W_JI_Z - Wi‘)) Lln (}"_‘—Tri)

[r: defined in Eq. (9)]
Discrete MR Ranking  c; = sign (Zm,exj di (3, 0) Y,[Z]) Iin (o)

[r: defined in Eq. (11)]

sparsen-gram, etc.) the list of documents in which it appears. Orheaund, when
searching for a good weak hypothesis, we scan the inverse@rid for each term we
evaluate its prediction confidenceg according to the version of AdaBoost that we use.
A straightforward implementation would require scannihg entire collection for each
term. However, precomputing certain values can save afsigni amount of time. For
AdaBoost.MH for instance, we first compute on each round dacall ;j the following

values '
Wit = 3" Di(i0).
1T, EX;

We now find for each term the valqué;{Z by summing over the documents in which each

term appears using the inverted list. We thenvggt = Wit — Wf, and proceed to find
¢;¢ and the corresponding values fdy. Hence, the amount of time spent on each round
searching for a weak hypothesis is proportional to the tatiahber of occurrences of all
the terms in the training collection. After a weak hypotBésifound, it take®) (mk) time
to update the distributio®, (¢, £).

Our system for multi-label text categorization, called Bdexter, can be used with any
of the four implementations of weak learners described @bav brief summary of the
different implementations is given in Tab. 1.

5. Evaluation measures

For evaluating the performance of our boosting algorithrasamsed three evaluation mea-
sures. The first one, one-error, is a simple generalizatiatagsification error for mul-
ticlass multi-label problems. The one-error is also diyectlated to the training er-
ror (Schapire & Singer, 1998). The other two evaluation messare based on measures
used in information retrieval and used to evaluate the paidiace of the various classifi-
cation algorithms in terms of their label rankings.

As noted earlier, we assume that a multi-label system irglac®rdering of the possible
labels for a given instance. That is, the output of the lewyraystem is a functiorf :
X x Y — R which ranks labels according tf(x, -) so that label; is considered to
be ranked higher that, if f(z,¢1) > f(x,{2). With the exception of RIPPER, all the
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classification systems we tested in this paper can indeedeied in this way, where the
ordering is defined by assigning a real number for each pledsiftance-label pait, £.

We will find it convenient to refer to theank of a given labe¥ for instancer under f
which we denote by ranKx, £). That is, formally, rank(z, -) is a one-to-one mapping
onto{l,..., k} suchthatiff(z, 1) > f(z,¢2) thenrank(z, £1) < rank (x, £2).

One-error. This measure evaluates how many times the top-ranked ladsziotin the
set of possible labels. Thus, if the goal of a multiclassesysis to assign a single label
to a document, the one-error measures how many times th&cigedabel was not in
Y. We call this measure the one-error of hypothésisince it measures the probability
of not getting even one of the labels correct. We denote tleeeoror of a hypothesig

by one-erff). We can define a classifiégf : X — ) that assigns a single label for a
document: by settingH (z) = arg max,cy f(x,y). Then, for a set of labeled documents
S ={(x1,Y1),...,(2m,Yn)), the one-error is

one-erg(H) = %i[[H(mi) gvi.

Note that, for single-label classification problems, the-emror is identical to ordinary
error.

Coverage. While the one-error evaluates the performance of a systethédop-ranked
label, the goal of the coverage measure is to assess therparfoe of a system for all the
possible labels of documents. That is, coverage measuvetahwe need, on the average,
to go down the list of labels in order to cover all the possiébels assigned to a document.
Coverage is loosely related to precision at the level ofgmnfecall. Formally, we define
the coverage of with respect to5 = ((x1, Y1), ..., (zm, Ym)) to be

coverage (H Zmaxrankf (x;,6) — 1.

For single-label classification problems, coverage is tleeae rank of the correct label,
and is zero if the system does not make any classificatiomserro

Average Precison. The above measures are not complete for multi-label cleagdn
problems: We can achieve good (low) coverage but suffer bigherror rates, and vice
versa. In order to assess the label ranking of a multiclastesyas a whole we used the
non-interpolatediverage precision, a performance measure frequently osegidluation

of information retrieval (IR) systems (Salton, 1991). Ndtewever, that non-interpolated
average precision is typically used in IR systems to evaltizdocumentanking per-
formance for query retrieval. In contrast, in our experitsene use average precision for
evaluating the effectiveness of thebel rankings. Formally, we define average-precision
for a rankingHd with respect to a training sét, denoted avgpré¢ for short, to be

m

avgpreg(H) = Z v

i=1

[{¢' € Yilranks (z;, £) < ranke(z;, £) }]
Z ranky (z, ¢) '
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In words, this measure evaluates the average fraction efdabnked above a particular
label¢ € Y; which actually are irt;. Note that avgpred f) = 1 for a systemf which
ranks perfectly the labels for all documents so that thereisocumentz; for which a
label not inY; is ranked higher than a label .

6. Text categorization experiments

In this section, we describe and analyze the experimentseasf@ermed using the four
boosting algorithms for text categorization that were dbsd in previous sections. The
experiments were performed on an SGI Challenge with 20 MIP@RO processors run-
ning at 195 MHz. The timing information we give in this sectis with respect to a single
cpu.

6.1. Test corpora

Reuters-21450. The documents in this collection were collected from Reutewswire

in 1987. We used the modified Apte (“ModApte”) split which taims12,902 documents.
A cleaned-up version of this dataset, called Reuters-21i§f8iblicly available from the
web pagent t p: / / www. r esear ch. att. com ~| ew s by David Lewis, who orig-
inally compiled the collection. We performed the followipge-processing prior to the
experiments: All words were converted to lower case, platain marks were removed,
and “function words” from a standard stop-list were removethe average length of a
document after pre-processingtiswords. This corpus is divided into categories which in
turn are sub-divided into sub-categories. The Reutersusdnps served as the benchmark
for many text-categorization studies using various partg of the corpus. See Yang's
work (1999) for an overview of the more common partitions gaions of this corpus as
well as a summary of the text categorization algorithmstésted on this corpus. In this
work, we considered several partitions of the Reuters cobased on the broad topics at
the top hierarchy (for further details see Tabs. A.1, A.d/a8). We used 3-fold cross val-
idation in our experiments with these partitions. To corepaur algorithm to previously
published work, we also performed experiments with a partithat includes all topics
in Reuters that have at least two relevant documents faritigi This collection includes
93 topics and was studied extensively by Yang (1999) and othémag referred to this
partition as version-3 and compared the results to prelyiciadied text-categorization
algorithms. We devote a separate section, Sec. 6.5, to #ezipigon of our experiment
with this widely tested partition of Reuters.

AP Titles. This is a corpus of AP newswire headlines (Lewis & Gale, 19%iyis &
Catlett, 1994). As for the Reuters corpus, previous worlceatrated on binary classifi-
cation by tagging documents as being relevant or irreleiatapics like “federal budget”
and “Nielsens ratings.” The total number of documents is ttwrpus is 319,463. The
headlines are an average of nine words long, with a totalbrdasy of 67,331 words. No
preprocessing of the text was done, other than to convewatls to lower case and re-
move punctuation marks. We performed two sets of experisngith this corpus based on
two different labeling schemes available for this corpus.
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UseNet data. This dataset consists of Usenet articles collected by L48§%) from20
different newsgroups. One thousand articles were colleicieeach newsgroup so there
are20,000 articles in the entire collection. This data was origintkated as single-labeled
(see for instance (Joachims, 1997)). However, since peepteto post articles to multiple
newsgroups, we found after examining the headers of thelestihat aboud 5% of the
articles are actually multi-labeled. Furthermore, we 614 identical articles which
were posted to more than one group. The total number of estadfter relabeling the data
based on the headers1i8,466 with 20,347 labels. Further description of this dataset is
givenin Tab. A.11. We usetifold cross validation in our experiments with the newsgrou
data.

6.2. Other algorithms

As mentioned in the introduction, there has been immensd wortext categorization
using many different algorithms. Since it is impossible mgplement and evaluate all
previously published algorithms, we chose the followingpaithms for comparison with
the boosting algorithms:

RIPPER. This is Cohen’s (1995) rule-learning system as adaptedxtacategorization
problems by Cohen and Singer (1996). RIPPER classifies antrrduby applying a set
of boolean tests that check the absence (or presence) ofwotlde documents. RIPPER
is not capable of dealing with multiple labels. RIPPER Ieaarclassifier in the form of a
boolean combination of simple terms. It does not providenkiray of the possible labels
for a given document. Therefore, the only performance nreasa can use for comparison
is the error rate.

Rocchio. We implemented a version of Rocchio’s algorithm (Rocch@y, 1), as adapted
to text categorization by lIttner et al. (1995) and modifiednolticlass problems. In
Rocchio, we represent the data (both training and test dertghas vectors of numeric
weights. The weight vector for thith document iss’ = (vi, v}, ..., v!), wherel is the
number of indexing terms used. We use single words as terrasoléwed the TF-IDF
weighting (Salton, 1991) and defined the weighto be:

i 1og(Np /ny)
Sy Jilog(Np /ny)

Here,Np is the number of documents,, is the number of documents in which the index-
ing termk appears. The weighf is log(m) + 1, wherem is the number of occurrences
of the indexing tern in document. We setf; = 0 if m = 0. For each clasé we build

a “prototype” vector which is the average weight vector alédocuments:; for which

¢ € Y;. Formally, letX (¢) = {i|¢ € Y;}. Then the prototype vector for claéss

1 i
OIIRE

iE€X(0)

vy, =

Test documents are classified by calculating the dot-piischetween the weight vector
representing the document and each of the prototype vecttise dot-products induce
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a ranking of the possible labels. We use this ranking to ewalthe performance of the
classifier for each of the measures discussed in Sec. 5.

Sleeping-experts.  This is an algorithm originally proposed by Blum (1997),diad
further by Freund et al. (1997), and first applied to text gatization by Cohen and
Singer (1996). Briefly, this algorithm classifies a docunmmnthresholding a score which
is a weighted combination of “experts” which are based ontbed-grams appearing in
the text. This score can be used to rank the labels. The #igodan be easily adapted
to multiclass (and multi-label) settings by assigning rerperts for each possible pair of
class and sparse word-gram. We used words and word pairg a&ttlof experts in the
experiments.

Naive-Bayes and probabilistic TF-IDF. These are probabilistic classifiers that assign,
for each document, a probability vector of belonging to eafcthe possible labels. Like
the algorithms above, these probability vectors can beedeas rankings and thus used for
evaluating the performance with respect to the measuresstisd in Sec. 5. These algo-
rithms are available as part of the publicly availaBEnbowtext-categorization system
which we used in our experiments. This system includes ailssification methods but,
in all of the experiments we performed, Naive-Bayes and g@hbdistic TF-IDF performed
better than the other methods available in Rainbow. Fudkscription of Naive-Bayes
and probabilistic TF-IDF for text categorization is givem (Mitchell, 1997; Joachims,
1997). To handle multi-label data, we mapped to the singihellcase by simply repeating
each document once for each of its assigned labels.

6.3. Experiments using single-label corpora

In the first set of experiments, we partitioned the Reuterpuminto six disjoint classes.
These classes roughly constitute the top categorizatieratthy. We discarded articles
that do not belong to any of the classes and articles thahbdatmmore than one class. A
detailed description of this subset is given in Tab. A.1. Tdtal number of articles in this
experiment isl0,187. We used three-fold cross-validation in the experimenke fesults
we report are averaged over the three folds. For all subddtgsodataset, we ran the
real AdaBoost.MH and real-abstaining AdaBoost.MH $c#00 rounds and the discrete
AdaBoost.MH and AdaBoost.MR f&0,000.

We performed experiments with varying numbers of classess#&lected subsets of the
data by taking the top classes, in decreasing number of documents, from3 to 6. For
instance, fork = 3 we took 7,761 documents from the clas&$RN, ACQ, andCOM
We then created three different splits into training and de¢a and ran the various text
categorization algorithms on each of the splits.

A summary of the results of the experiments with this datesgiven in Tab. A.2 and
graphically in Fig. 5. The performance of the different rialétss versions of AdaBoost
is comparable on this data set, with a small advantage teetilevalued versions of Ada-
Boost.MH (with and without abstaining). All the four veramof AdaBoost for multi-label
problems clearly outperform all of the other classificatadgorithms. The error of Ada-
Boost.MH is almosE0% smaller than the error-rate of the best competing algorahitiis
dataset (Naive-Bayes). Similar behavior is observed feei@ge and average-precision.
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Figure 5. Left: Comparison of the various boosting algorithms fortteategorization on the first single-label
subset of Reuters-21450. Right: Comparison of real AdaBdbswith Naive-Bayes, probabilistic TF-IDF,
Sleeping-experts, and Rocchio on the same subset.

The next set of experiments with single-label datasets fils thie AP Titles corpus. In
the first subset of AP titles, each headline is (possiblyglied by a single topic fror20
possible classes. We extracte®841 documents which belong to exactly one of ttie
classes. A description of this subset of AP titles is givefab. A.3. For the subsets in this
dataset, we ran the real-valued version of AdaBoost.MH(aitd without abstaining) for
10,000 rounds and the discrete AdaBoost.MH and AdaBoost.MR.igh00 rounds.

As before, we tested the performance of the algorithms naetihg subsets with grow-
ing numbers of classes, where we ordered the classes byaderyeiumber of documents
in each class. The results are summarized in Tab. A.4 andigadly in Fig. 6. Among
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the different boosting algorithms, real AdaBoost.MH extsilthe best performance: it is
slightly better than real abstaining AdaBoost.MH and digantly better than the discrete
AdaBoost.MH and discrete AdaBoost.MR where the latter ésviorst performer among

the four boosting algorithms. The main reason for this i$ #602000 rounds were simply

not enough for the discrete versions. For discrete AdaB@ésiand AdaBoost.MH, the

training error was still monotonically decreasing when wached the maximal number
of rounds. This improved performance in decreasing thaitrgierror of the real-valued

versions of AdaBoost is even more vivid for large datasetsy@show subsequently.

The best competitor algorithm for this dataset is Sleemxgerts. In fact, Sleeping-
experts slightly outperforms AdaBoost.MH when the humHetlasses is three. How-
ever, for subsets of at least eight classes, AdaBoost.Mtifgigntly outperform Sleeping-
experts with respect to all three performance measures &lsb the interesting fact that,
in contrast to the results for the previous dataset, praistibiTF-IDF outperforms Naive-
Bayes, yet both algorithms are clearly inferior to AdaBddst.

The last set of experiments with single-labeled multiclassblems is with theentire
AP titles collection. In addition to the partial partitiomtd twenty specific topics above,
this corpus is also divided into six general categdrigsch that each article falls into
exactly one category. We removed all articles not belontpreny of the categories. The
number of articles that remained89,700. Since this labeling scheme results in a very
large corpus, we did not use cross-validation in the expanis Instead, we used Lewis’s
chronological splitinto training and test sets. The tnagset for this split containisi2, 727
headlines and the test #,973. A description of the classes is given in Tab. A.5 and a
summary of the results is given in Tab. A.6.

Since Rainbow allocates a different file for each articlés thataset was too large to
be converted into the format required for Rainbow. We treeefcompared real Ada-
Boost.MH, discrete AdaBoost.MH, and discrete AdaBoost®R with Sleeping-experts,
Rocchio, and RIPPER.

Our main focus in the experiment with this dataset was thieaspaance of the different
boosting algorithms as a function of number of rounds. In Fjgve show the training and
test error of the algorithms as a function of the number ohdsu We see that the version of
AdaBoost.MH which uses real-valued predictions drambyicutperforms the methods
with predictions in{—1,+1}. After 180,000 rounds, discrete AdaBoost.MH reaches a
training error 0f32.2% while it took real AdaBoost.MH only42 rounds to reach this
training error — more than a two-hundred fold speed-up!

As with the previous experiments, discrete AdaBoost.MHrset consistently outper-
form discrete AdaBoost.MR. This might be partially due te #pproximation that is made
of Z, in lieu of its direct minimization. We fortunately do not @vse overfitting with the
AdaBoost algorithms so that the better performance in dsang the training error results
in lower error rates on the test data.

The best competitor algorithm for this dataset is Sleeixgerts. It takes about a thou-
sand rounds for AdaBoost.MH to reach the test error rate e¢@hg-experts and after
30,000 roundsiits test error is significantly lower. However, Siagpexperts is much faster
on this dataset, finishing in about a minute, roughly as lanig &akes to run boosting for
25 rounds.
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Figure 6. Left: Comparison of the various boosting algorithms fortteategorization on the first single-label
subset of AP titles. Right: Comparison of real AdaBoost.MithviNaive-Bayes probabilistic TF-IDF Sleeping-
experts and Rocchio on the same dataset.

6.4. Experiments using multi-label corpora

For the first set of experiments with multi-labeled corpava, used the Reuters dataset
again. This time, we partitioned it into classes based onitletopics constituting the top
hierarchy. We discarded documents not belonging to ang tbpivever, articles belonging
to more than one topic were assigned multiple labels. Tl moimber of articles for this
partition is10,792 and the number of different labelsii$,588; about7% of the articles are
labeled with more than one label. We performed experimeptselecting a subset of the
classes and the corresponding articles. The subsets waresaected by choosing the
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Figure 7. Comparison of the training (left) and test (right) errorngsthree boosting methods on the second
single-label subset of AP titles

classes with the largest number of articlesifat 3, ..., 9. Thus, once again, the difficulty
of the classification problem increases with A description of the dataset is given in
Tab. A.7. In all of the experiments with this data, we use@ehiold cross validation. We
ran the versions with real-valued prediction fidr,000 rounds and the discrete versions
40,000 rounds.

A summary of the results, averaged over the three foldsyengn Tab. A.7 and Fig. 8.
The results for this multi-label dataset are similar to thevipus single-label datasets.
The different boosting methods are comparable in perfoomaAdaBoost.MR is slightly
worse than the other three for one-error and average-praciReal AdaBoost.MH again
outperforms all the competitor algorithms with respecthe three performance evalua-
tion measures. Furthermore, there is no clear winner amuagther algorithms: while
Sleeping-experts is best for the subsets with a small numbelasses ¥ < 6), Naive-
Bayes is the best one for the large classification probldms (6). Nonetheless, Ada-
Boost.MH clearly outperforms both methods on all subsets.

In the second set of multi-label experiments with Reuteespartitioned the dataset into
the classes constituting the leaves of the hierarchy otsopivVe chose all classes which
include at least00 articles. This subset includés different classes which sum to 3,631
documents labeled by 5,173 different labels. In the fulkatilvith19 classes abou)% of
the articles have more than one label. As before, we perfdewrperiments with subsets
of growing size and classes, fér= 3,...,19. A detailed description of the dataset is
given in Tab. A.9. As before we usedfold cross-validation to estimate the performance.
Again, we ran the real-valued version fiir,000 rounds and the discrete fa,000.

A summary of the results is given in Tab. A.10 and Fig. 9. Hg@mwe see comparable
performance of the different boosting algorithms. Als@| iedaBoost.MH is better than
all competitor algorithms, especially with respect to @nesr and average-precision. For
this dataset, Rocchio seems to be the best alternativectnitfachieves coverage values
which are comparable to real AdaBoost.MH on most, if notadlthe subsets.

The last experiment with multi-labeled text data was penka with newsgroup articles.
Here we followed the experimental methodology used in prevstudies with this dataset.
We used-fold cross validation. For each fold we held the test setifixed varied the size
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Figure 8. Left: Comparison of the various boosting algorithms fortteategorization on the first multi-label
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subset of Reuters-21450. Right: Comparison of real AdaBdbswith Naive-Bayes, probabilistic TF-IDF,

Sleeping-experts, and Rocchio (right) on the same dataset.

of the training set by sub-sampling the full training setdach fold. We ran the different
algorithms for training sets of siz&00, 500, 1000, 2000, 5000, 10000, and 12,977 (two

thirds of the total number of articles available for thisatat). We compared real Ada-
Boost.MH with the two methods which in previous studies aekd the best results on this
dataset, namely, Naive-Bayes and probabilistic TF-IDFalMaved weak hypotheses (and

features for Naive-Bayes and probabilistic TF-IDF) of $engrords and word pairs. We
set the number of rounds for AdaBoost.MH to be twice the nurobtraining documents.
Hence, we ran AdaBoost.MH as little 480 rounds and at mog6,000 rounds.
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Figure 9. Left: Comparison of the various boosting algorithms fort teategorization on the second multi-label
subset of Reuters-21450. Right: Comparison of real AdaBdbs with Naive-Bayes probabilistic TF-IDF
Sleeping-experts and Rocchio on the same dataset.

The results comparing real AdaBoost.MH, probabilisticIDi~= and Naive-Bayes for
the three evaluation measures as a function of the trairghgize are shown in Fig. 10.
For training sets of size smaller th&6,000, real AdaBoost.MH is clearly inferior to prob-
abilistic TF-IDF and Naive-Bayes. The performance of AdaBtdVIH is especially poor
for training sets of size smaller than a thousand. When tiiaitig set is large enough,
we again see that AdaBoost.MH outperforms both probatill$t-IDF and Naive-Bayes
with respect to all three measures. However, the differém@erformance is not as sig-
nificant as in the previous datasets. One possible exptanfdi these results is that, in
contrast to probabilistic TF-IDF and Naive-Bayes, AdaBddsl incorporates very little
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Figure 10.Comparison of real AdaBoost.MH Naive-Bayes and probdlulig=-IDF as a function of the number
of training examples on the UseNet data

prior knowledge. Thus, although AdaBoost.MH is minimizilng Hamming loss on the
training set, the generalization error is rather poor, deéd implied by theoretical studies.
Once there are enough examples, the prior knowledge, iocatgd via the term weights
in probabilistic TF-IDF and Naive-Bayes, is much less caband AdaBoost.MH does a
better job in driving the training error down, and therefafso the generalization error
decreases. These results suggest that the new boostinghatgofor text categorization

would be best utilized in complex multiclass problems wittage number of training

examples.

6.5. An experiment with a large number of classes

We conclude this section on text categorization experimesith a multi-label categoriza-
tion experiment using a dataset that contains a large nuaflodasses. In this experiment
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we used the partition of Reuters-21450 that was preparedpby &t al. (1994) for their
experiments with the SWAP-1 rule learner. The Reuters-@téBpus was partitioned into

a training set of’, 789 documents and a test set contain3ng09 document. This partition
includes all classes with at least two documents in theitrgiget and at least one docu-
ment in the test set. There &# such classes. Yang (1999), who refers to this partition of
Reuters as version-3, performed extensive comparisoisvarious algorithms that were
evaluated on this partition. Here we compare AdaBoost.MHhwhe two classification
algorithms that achieved the best performance results@diogpto Yang; these are /&
nearest-neighbor (KNN) classifier and a linear classifisetdan a least squares fit of term
weights to the class labels (LLSF).

We processed the text as described in Sec. 6.1. Each documaeitdbeled with a subset
of the 93 possible classes. The average number of labels per docuséert. This
problem requires a vast amount of memory; to maintain thiloligion D, (¢, j), we need
a table of sizenk = 7789 x 93 which amounts to over 700,000 numbers. As in previous
experiments, we ran AdaBoost.MH for 10,000 rounds whick esimout3 days of cpu time
to complete. The smoothing valuewas set using-fold cross validation on the training
set. We would like to note however that using the defaultergielded only slightly worse
results. (For instance, the 11-point average precisiordi2 when using the default value
for e compared t®.934 when using cross-validation to determing On the left hand-side
of Fig. 11 we plot the one-error on the training and test data &unction of the number
of rounds. Note that the one-error on the training set readiseminimal value, which
is very close to zero, after abou®00 rounds of boosting while the test error continues
to decrease even aftéf,000 rounds, apparently without overfitting. This behavior was
also observed in other experiments with boosting algorstamd is partially motivated by
theoretical analysis (Schapire et al., 1998).

To make our results on this dataset comparable with prelyiqusblished results, we
used the three evaluation measures that were used by Ya8g)@®d others, namely, 11-
point interpolated average precision (Salton & McGill, 398" (van Rijsbergen, 1979),
and micro-averaged break-even point. The first and the g@rtbrmance measures asses
the general quality of the label ranking while the secondsuea evaluates the classifi-
cation quality. For further details on these evaluationsueas see (Yang, 1999). To use
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Table 2.Summary of results obtained for Reuters-21450 wilclasses.

(threshold adjusted on data)  (thresheld) mircro-avg.
Algorithm 11-pt Avg. Precision 13 13 BEP

AdaBoost.MH 0.934 0.853 0.851 0.86
kNN 0.924 0.852 — 0.85
LLSF 0.901 0.855 — 0.85

the I, measure we need to set a threshold for the label-rankingdecide which labels
should be associated with a document. We evaluated therpenfice using two thresh-
olds: the zero threshold and a threshold that was adjusted $o0 maximizel; on the
training data after AdaBoost.MH completét, 000 rounds. In Tab. 2 we summarize the
results and compare them to the best results obtained by. &g would like to note
parenthetically that in a very recent work, which was brdugtout attention during the
final preperations of this paper, Weiss et al. (1999) repbreak-even point o§7% using
the Reuters-21578 dataset.) We also give on the right hded$iFig. 2 a precision-recall
graph for AdaBoost.MH together with the break-even poiritcee other classification
algorithms evaluated on this dataset. The performance aBAdst.MH is state-of-the-art:

it achieves the highest 11-point interpolated averageigicgcand break-even point and
comes very close to the befst value obtained on this partition of Reuters. However, it is
difficult to asses the statistical significance of theseltesince the performance measures
used are highly nonlinear and non-additive. Nonethelégsgbod performance of Ada-
Boost.MH on this well-studied dataset provides further givgl evidence that boosting
algorithms can serve as a viable alternative to existingridtyms for text categorization.

7. Speech categorization experiments

In the final set of experiments, we tested our system on actaskification task. The
purpose of this task is to automatically identify the typecall requested in response to
the greeting, “How may | help you?” For instance, if the rasgmis, “Yes, | would like to
charge this call to my Visa card,” then the call should besifees] as a calling-card call.
There are fourteen call types, plus an ‘other’ category. &oafls can be of more than one
type (for instance, a call can be both collect and persopetson).

This task was previously studied by Gorin and others (G&iocardi, & Wright, 1997;
Gorin, Parker, Sachs, & Wilpon, 1996; Riccardi, Gorin, [g0l& Riley, 1997; Wright,
Gorin, & Riccardi, 1997), and we used the same data, namelgllection of8,000 train-
ing utterances and,000 test utterances. Both the training and test utterances alkre
transcribed by humans from actual spoken responses. Tihetersinces are also available
in a form produced by an automatic speech recognizer; thispurse, is the only form
that would be available in a real system.

Following others who have worked on this dataset, we presentesults in the form
of an ROC curve. For this, each algorithm needs to producenfidemce in its own pre-
dictions. The curve is then produced by varying a rejectstimotd which specifies that
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Figure 12.Results on a call-type identification task.

examples with confidence below the given threshold shoulejeeted (for this task, this
would mean that the call would have to be handled by a humaratipi We then plot

the accuracy of the classifier on non-rejected examples asctidn of the false rejection
rate, which is the fraction of examples incorrectly rejdcta classification by the system
of ‘other’ is also considered equivalent to rejection.

To get a confidence level for the predictions of AdaBoost.Mid,used the difference
between the final scores of the first and second ranked labBé#lat is, if f is the final
classifier produced by AdaBoost.MH, then the confidencegassli to the prediction of
on atest example is f(x, (1) — f(x, £2) wherel; and¢, are the first and second ranked
labels according tg(z, -).

We trained real AdaBoost.MH on this data usitg rounds of boosting, and allowing
sparse word trigrams for the terms used in forming the wealotheses. We compared our
system to the best previous published work on this dataaately, that of Wright, Gorin,
and Riccardi (1997). The results are shown in Fig. 12 as af®D€ curves. For the top
set of curves, the algorithms were tested using humaneriiesl test data. For the bottom
set of curves, the test data were generated using an autospattch recognizer (based
on the same spoken utterances). The solid curves are for@aaBIH, and the dashed
curves are those of Wright, Gorin, and Riccardi (1997).

The performance of the two algorithms is strikingly similar most reject levels. How-
ever, AdaBoost.MH does significantly better on the trah&ttidata for moderately large
reject levels of 40% or more. These results indicate thaslightly less than half of the
examples, AdaBoost.MH can produce predictions that arestloertainly correct.

Note that the training set is the same, whether we test on atigrivanscribed or au-
tomatically recognized data. AdaBoost.MH, like other féag algorithms, attempts to
minimize the classification error on the training data angstamploys the tacit assump-
tion that the test data are generated by the same sourcetasitlieg data. This is clearly
not true when we use the automatically transcribed datating. We believe that we can
improve the performance of our system using training degithautomatically generated
by a speech recognizer.
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Notes

=

arbitrary long (sparse)-grams but we restrict ourselves to words and word bigramsdfmparison purposes.

N

“Function words” include high frequency but contentlessds like ‘of’ and ‘the’. We used the stop-list
given by Lewis (Lewis, 1992).
http://www.cs.cmu.edu/afs/cs/project/theo-11/wnawe-bayes.html

w

4. There are actually5 categories but onlg of them contain more tha#0 articles. We discarded the
categories (and the corresponding articles) with only adeieles.
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Appendix A
Description of text datasets and summary of results

Table A.1.Description of the classes constituting the single-labbkst
of Reuters-21450.

Class | #Docs | Cum. #Docs
1 Earnings and Earnings Forecasts (EARN)3923 3923
2 Mergers/Acquisitions (ACQ) 2292 6215
3 Commodity Codes (COM) 1546 7761
4 Economic Indicator Codes (ECON) 997 8758
5 General Articles (GNRL) 871 9629
6 Energy Codes (ENRG) 558 10187

Table A.2.Results for the single-label subset of Reuters-21450 @dL).

real AdaBoost.MH Naive-Bayes Rocchio Sleeping-experts RIPPER
Error Cover Prec.| Error Cover Prec.| Error Cover Prec.| Error Cover Prec. Error

k

3| 171 0.018 0.991 4.63 0.052 0.975 14.71 0.203 0.917 450 0.049 0.977) 8.52
4| 222 0027 0988 540 0.066 0.971 14.36 0.250 0.914 6.27 0.075 0.967] 10.78
5| 3.86 0051 0978 6.24 0.086 0.965 15.25 0.290 0.907 9.18 0.123 0.95 14.35
6 | 421 0.058 0.976 7.29 0.108 0.959 15.37 0.323 0.905 9.93 0.145 0.94 14.81

Table A.3.Description of the classes constituting the first singleelaubset of AP titles.

Class | #Docs | Cum. #Docs|| Class | #Docs | Cum. #Docs
1 japan 4272 4272 11 aparts 770 26262
2 bush 3738 8010 12 dukakis 702 26964
3 israel 3541 11551 13 yugoslavia| 575 27539
4 britx 3370 14921 14  quayle 488 28027
5 qulf 3216 18137 15 ireland 457 28484
6 german 2321 20458 16  burma 432 28916
7  weather 1824 22282 17  bonds 384 29300
8 dollargold | 1613 23895 18 nielsens 248 29548
9 hostages 800 24695 19 boxoffice 170 29718
10 budget 797 25492 20 tickertalk 123 29841
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Table A.4 Results for the first single-label subset of AP titles (Tal®)A
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real AdaBoost.MH Naive-Bayes Rocchio Sleeping-experts Ripper
k Error Cover Prec. | Error Cover Prec. | Error Cover Prec. | Error Cover Prec. | Error
3 587 0.0789 0.9673 11.53 0.1397 0.9383 24.79 0.4144 0.8483 5.20 0.0661 0.9714 10.71
4 9.34 0.1517 0.945Q 16.90 0.2503 0.903%4 33.15 0.6365 0.7886 9.48 0.1501 0.9444 18.76
5 11.39 0.2075 0.9313 21.04 0.3528 0.8757 30.98 0.7888 0.7867 11.92 0.2161 0.9281 21.78
6 13.19 0.2782 0.9171 23.86 0.4525 0.8545 31.28 0.9386 0.7789 13.90 0.2972 0.9123 23.80
7 1243 0.2671 0.9220 21.89 0.4204 0.8664 29.23 0.9002 0.793% 13.36 0.2861 0.9162 22.81
8 12.04 0.2606 0.9246 21.29 0.4084 0.8701 27.77 0.8480 0.8047 13.25 0.2954 0.9161 21.93
9 12.57 0.2887 0.92071 21.71 0.4383 0.8661 28.00 0.9541 0.8004 13.99 0.3230 0.9109 22.25
10 | 13.27 0.3098 0.916Q 22.77 0.4788 0.85871 28.38 1.0103 0.7971 14.89 0.3600 0.9049 23.29
11 | 1424 0.3461 0.9094 23.80 0.5301 0.8504 30.02 1.1412 0.7861 15.75 0.4163 0.8974 25.69
12 | 13.97 0.3500 0.9108 24.82 0.5636 0.8441 29.76 1.1892 0.7873 16.08 0.4356 0.8953 25.41
13 | 1471 0.3949 0.9049 25.03 0.5940 0.8413 30.24 1.2752 0.7838 16.49 0.4675 0.8921 26.03
14 | 15.01 0.4050 0.9033 26.25 0.6570 0.8322 30.32 1.3229 0.7828 16.97 0.5019 0.8884 25.83
15| 1553 0.4372 0.8993 26.65 0.6888 0.8289 30.44 1.3933 0.7811 17.08 0.5248 0.8869 26.74
16 | 1558 0.4647 0.8979 26.87 0.7191 0.8268 30.63 1.4676 0.778 17.33 0.5510 0.8849 26.74
17 | 16.00 0.4915 0.895Q 27.09 0.7483 0.8243 31.04 1.4875 0.7760 17.59 0.5697 0.8829 26.86
18 | 1593 0.5008 0.895Q 27.02 0.7722 0.8239 30.98 1.4955 0.7768 17.93 0.5940 0.8806 26.55
19 | 1591 0.5041 0.8951 27.07 0.7948 0.8229 31.04 15212 0.7759 17.58 0.6035 0.8824 26.90
20 | 16.29 0.5483 0.892Q 27.04 0.8365 0.8218 32.11 1.6277 0.7674 18.01 0.6430 0.8788 27.52

Table A.5.Description of the classes constituting

the second single-label subset of AP titles

Class | #Docs Train| #Docs Test
1 Domestic 46142 21605
2 International 44499 21398
3 Financial 22698 11410
4 Washington 22407 10656
5 Political 5739 1313
6 Entertainment| 1242 591

Table A.6.Error rates for the different algorithms on the second sifigbel subset of AP
titles (Tab. A.5)

(30,000 rounds)
real AdaBoost.MH

(180,000 rounds)
discrete AdaBoost.MH

‘ RIPPER‘ SIeeping-expertJ Rocchio

27.43

| 3222

| 5329 |

29.44

40.14
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Table A.7.Description of the classes constituting the
first multi-label subset of Reuters-21450

Table A.8.Results for the first multi-labeled subset of Reuters-21Z&0. A.7)

Cum. Avg. No.
Class #Docs | #Docs | Labels/Docs

1 Earnings 3964 | 3964 —
2 Acquisitions| 2369 | 6333 —
3 Commodity | 1695 | 8028 1.0064
4  Economics 1140 9168 1.0116
5 Interest 717 9885 1.0171
6 Energy 701 10586 1.0220
7 Money-Fx 478 11064 1.0407
8  Shipping 286 11350 1.0534
9 Currency 238 11588 1.0738

33

Table A.9.Description of the classes constituting the second maittel subset of Reuters-21450

Cum. Avg. No. Cum. Avg. No.
Class #Docs | #Docs | Labels/Docs Class #Docs | #Docs | Labels/Docs
1 money-fx | 717 717 — 11 oilseed 171 4167 1.3835
2 grain 582 1299 — 12 sugar 162 4329 1.3778
3 crude 578 1877 1.0032 13 coffee 139 4468 1.3693
4  trade 486 2363 1.0261 14 gnp 136 4604 1.3682
5 interest 478 2841 1.0956 15 ol 124 4728 1.2842
6 ship 286 3127 1.1309 16 gold 124 4852 1.3625
7  wheat 283 341 1.2319 17 soybean| 111 4963 1.3937
8 corn 237 3647 1.3176 18 gas 105 5068 1.3544
9 diIr 175 3822 1.3773 19 bop 105 5173 1.4247
10 supply 174 3996 1.3629

real AdaBoost.MH Naive-Bayes Rocchio Sleeping-experts
k | Error  Cover Prec. | Error  Cover Prec. | Error  Cover Prec. | Error  Cover Prec.
3| 196 0.0283 0.989§ 530 0.0666 0.9723 14.64 0.2164 0.9163 3.23 0.0459 0.9826
4| 242 0.0408 09871 566 0.0846 0.9693 14.15 0.2681 0.9138 442 0.0714 0.9755
5| 324 0.0616 0.9821 6.64 0.1122 0.9631 14.10 0.2985 0.9130Q 6.33 0.1127 0.9640
6| 380 0.0792 09783 7.03 0.1402 0.9595 13.93 0.3392 0.9122 6.94 0.1370 0.9597
7| 515 0.1315 0.9697 832 0.1969 0.95074 13.91 0.3940 0.9107 8.61 0.2660 0.9439
8 | 510 0.1486 0.9695 8.79 0.2433 0.9465 14.31 0.4336 0.9078 9.50 0.3126 0.9382
9| 524 0.1868 0.9674 8.84 0.2856 0.9457 14.79 0.4843 0.9042 9.15 0.4073 0.9361
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Table A.10Results for the second multi-labeled subset of Reuter&@{#ab. A.9)

real AdaBoost.MH Naive-Bayes Rocchio Sleeping-experts
k Error Cover Prec. | Error Cover Prec. | Error Cover Prec. | Error Cover Prec.
3 1.07 0.0155 0.9944 1.87 0.0257 0.9901] 1.82 0.0225 0.99077 1.66 0.0208 0.9915
4 295 0.0625 0.9842 5.77 0.1151 0.9667 9.81 0.1329 0.949 5.99 0.1033 0.9674
5 6.83 0.1978 0.9613 10.14 0.2646 0.9409 11.30 0.2391 0.9392 10.64 0.2503 0.9408
6 763 0.2590 0.9554 11.68 0.3729 0.9284 12.04 0.2850 0.9351] 11.68 0.3212 0.9330
7 7.30 0.3671 0.9564 13.04 0.5448 0.9174 12.28 0.3934 0.9334 11.42 0.4187 0.9345
8 741 0.4682 0.9545 13.44 0.7240 0.9093 12.14 0.4956 0.9321 11.31 0.5213 0.9337
9 8.22 0.5553 0.94871 14.63 0.9041 0.8971 13.15 0.5888 0.9263 11.78 0.7719 0.9199
10 | 890 0.5768 0.9429 1456 0.8469 0.8984 13.71 0.6153 0.9195 14.53 0.9130 0.8973
11| 9.36 0.6338 0.9383 16.20 1.0817 0.8809 14.67 0.6657 0.9136 15.37 1.0110 0.8909
12 | 9.01 0.6200 0.9414 16.52 1.1012 0.879Q 13.81 0.6620 0.9173 13.97 1.0359 0.8979
13| 9.29 0.6378 0.9389 16.12 1.1382 0.8822 14.01 0.6448 0.9175 13.67 1.0257 0.9011
14| 865 0.6710 0.93927 17.24 1.1866 0.8736 13.58 0.6734 0.9161 15.22 1.2101 0.8862
15| 6.30 0.4888 0.9574 14.69 1.1174 0.8876 11.68 0.5966 0.9232 14.47 0.8724 0.9006
16 | 9.74 0.7082 0.9329 18.23 1.3679 0.8652 14.38 0.7321 0.9083 15.95 1.2842 0.8813
17 | 9.21 0.7001 0.93727 18.25 1.6119 0.8602 14.27 0.7863 0.9081 15.84 1.3839 0.8807
18 | 7.08 0.6179 0.951Q 1559 1.5274 0.8704 12.16 0.7298 0.9178 15.56 1.3659 0.8826
19 | 10.02 0.8369 0.9295 18.01 1.7656 0.857Q 14.51 0.8251 0.9052 17.43 1.8193 0.8613

Table A.11.List of the newsgroups and the number of articles posted to
the newsgroups. (An article may be posted to multiple grgups

Group | #Docs || Group | #Docs
alt.atheism 1114 || rec.sport.hockey 1000
comp.graphics 1002 || sci.crypt 1000
comp.os.ms-windows.mis¢ 1000 || sci.electronics 1000
comp.sys.ibm.pc.hardware 1028 || sci.med 1001
comp.sys.mac.hardware | 1002 || sci.space 1000
comp.windows.x 1000 || soc.religion.christian| 997
misc.forsale 1005 || talk.politics.guns 1008
rec.autos 1004 || talk.politics.mideast | 1000
rec.motorcycles 1000 || talk.politics.misc 1163
rec.sport.baseball 1000 || talk.religion.misc 1023




