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Aur élie C. Lozano
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

alozano@princeton.edu

Sanjeev R. Kulkarni
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544

kulkarni@princeton.edu

Robert E. Schapire
Department of Computer Science

Princeton University
Princeton, NJ 08544

schapire@cs.princeton.edu

Abstract

We study the statistical convergence and consistency of regularized
Boosting methods, where the samples are not independent and identi-
cally distributed (i.i.d.) but come from empirical processes of stationary
β-mixing sequences. Utilizing a technique that constructs a sequence of
independent blocks close in distribution to the original samples, we prove
the consistency of the composite classifiers resulting from a regulariza-
tion achieved by restricting the 1-norm of the base classifiers’ weights.
When compared to the i.i.d. case, the nature of sampling manifests in the
consistency result only through generalization of the original condition
on the growth of the regularization parameter.

1 Introduction

A significant development in machine learning for classification has been the emergence
of boosting algorithms [1]. Simply put, a boosting algorithm is an iterative procedure that
combines weak prediction rules to produce a composite classifier, the idea being that one
can obtain very precise prediction rules by combining rough ones. It was shown in [2] that
AdaBoost, the most popular Boosting algorithm, can be seen as stage-wise fitting of addi-
tive models under the exponential loss function and it effectively minimizes an empirical
loss function that differs from the probability of incorrect prediction. From this perspec-
tive, boosting can be seen as performing a greedy stage-wise minimization of various loss
functions empirically. The question of whether boosting achieves Bayes-consistency then
arises, since minimizing an empirical loss function does not necessarily imply minimizing
the generalization error. When run a very long time, the AdaBoost algorithm, though resis-
tant to overfitting, is not immune to it [2, 3]. There also exist cases where running Adaboost
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forever leads to a prediction error larger than the Bayes error in the limit of infinite sample
size. Consequently, one approach for the study of consistency is to modify the original Ad-
aboost algorithm by imposing some constraints on the weights of the composite classifier
to avoid overfitting. In this regularized version of Adaboost, the 1-norm of the weights of
the base classifiers is restricted to a fixed value. The minimization of the loss function is
performed over the restricted class [4, 5].

In this paper, we examine the convergence and consistency of regularized boosting algo-
rithms with samples that are no longer i.i.d. but come from empirical processes of station-
ary weakly dependent sequences. A practical motivation for our study of non i.i.d. sam-
pling is that in many learning applications observations are intrinsically temporal and hence
often weakly dependent. Ignoring this dependency could seriously undermine the perfor-
mance of the learning process (for instance, information related to the time-dependent or-
dering of samples would be lost). Recognition of this issue has led to several studies of non
i.i.d. sampling [6, 7, 8, 9, 10, 11, 12].

To cope with weak dependence we apply mixing theory which, through its definition of
mixing coefficients, offers a powerful approach to extend results for the traditional i.i.d.
observations to the case of weakly dependent or mixing sequences. We consider theβ-
mixing coefficients, whose mathematical definition is deferred to Sec. 2.1. Intuitively, they
provide a “measure” of how fast the dependence between the observations diminishes as
the distance between them increases. If certain conditions on the mixing coefficients are
satisfied to reflect a sufficiently fast decline in the dependence between observations as
their distance grows, counterparts to results for i.i.d. random processes can be established.
A comprehensive review of mixing theory results is provided in [13].

Our principal finding is that consistency of regularized Boosting methods can be established
in the case of non-i.i.d. samples coming from empirical sequences of stationaryβ-mixing
sequences. Among the conditions that guarantee consistency, the mixing nature of sam-
pling appears only through a generalization of the one on the growth of the regularization
parameter originally stated for the i.i.d. case [4].

2 Background and Setup

2.1 Mixing Sequences

Let W = (Wi)i≥1 be a strictly stationary sequence of random variables, each having the
same distributionP onD ⊂ Rd. Let σl

1 = σ (W1,W2, . . . ,Wl) be theσ-field generated
by W1, . . . ,Wl. Similarly, let σ∞l+k = σ (Wl+k,Wl+k+1, . . . , ) . The following mixing
coefficients characterize how close to independent a sequenceW is.

Definition 1. For any sequenceW , theβ-mixing1 coefficient is defined by
βW (n) = supk E sup

{|P (
A|σk

1

)− P (A) | : A ∈ σ∞k+n

}
,

where the expectation is taken w.r.t.σk
1 .

HenceβW (n) quantifies the degree of dependence between ’future’ observations and ’past’
ones separated by a distance of at leastn. In this study, we will assume that the sequences

1To gain insight into the notion ofβ-mixing, it is useful to think of theσ-field generated by a ran-
dom variableX as the “body of information” carried byX. This leads to the following interpretation
of β-mixing. Suppose that the indexi in Wi is the time index. LetA be an event happening in the
future within the period of time betweent = k + n andt = ∞. |P (A|σk

1 )− P (A)| is the absolute
difference between the probability that eventA occurs, given the knowledge of the information gener-
ated by the past up tot = k, and the probability of eventA occurring without this knowledge. Then,
the greater the dependence betweenσk

1 (the information generated by(W1, . . . , Wk)) andσ∞k+n (the
information generated by(Wk+n, . . . , W∞)), the larger the coefficientβW (n).



we consider are algebraicallyβ-mixing. This property implies that the dependence between
observations decreases fast enough as the distance between them increases.

Definition 2. A sequenceW is calledβ-mixing if limn→∞ βW (n) = 0. Further, it is
algebraicallyβ-mixing if there is a positive constantrβ such thatβW (n) = O (n−rβ ) .

The choice ofβ-mixing appears appropriate given previous results that showed “uniform
convergence of empirical means uniformly in probability” and “probably approximately
correct” properties to be preserved forβ-mixing inputs [11]. Some examples ofβ-mixing
sequences that fit naturally in a learning scenario are certain Markov processes and Hidden
Markov Models [11]. In practice, if the mixing properties are unknown, they need to be
estimated. Although it is difficult to find them in general, there exist simple methods to
determine the mixing rates for various classes of random processes (e.g. Gaussian, Markov,
ARMA, ARCH, GARCH). Hence the assumption of a known mixing rate is reasonable and
has been adopted by many studies [6, 7, 8, 9, 10, 12].

2.2 Classification with Stationaryβ-Mixing Training Data

In the standard binary classification problem, the training data consist of a setSn =
{(X1, Y1) , . . . , (Xn, Yn)}, whereXk belongs to some measurable spaceX , andYk is
in {−1, 1}. UsingSn, a classifierhn : X → {−1, 1} is built to predict the labelY of an
unlabeled observationX. Traditionally, the samples are assumed to be i.i.d., and to our
knowledge, this assumption is made by all the studies on boosting consistency. In this pa-
per, we suppose that the sampling is no longer i.i.d. but corresponds to an empirical process
of stationaryβ-mixing sequences. More precisely, letD = X × Y, whereY = {−1, +1}.
Let Wi = (Xi, Yi). We suppose thatW = (Wi)i≥1 is a strictly stationary sequence of
random variables, each having the same distributionP onD and thatW is β-mixing (see
Definition 2). This setup is in line with [7]. We assume that the unlabeled observation is
such that(X,Y ) is independent ofSn but with the same marginal.

3 Statistical Convergence and Consistency of Regularized Boosting
for Stationary β-Mixing Sequences

3.1 Regularized Boosting

We adopt the framework of [4] which we now recall. LetH denote the class of base
classifiersh : X → {−1, 1}, which usually consists of simple rules (for instance decision
stumps). This class is required to have finite VC-dimension. CallF , the class of functions
f : X → [−1, 1] obtained as convex combinations of the classifiers inH:

F =
{

f (X) =
t∑

j=1

αjhj (X) : t ∈ N, α1, . . . , αt ≥ 0,

t∑

j=1

αj = 1, h1, . . . , ht ∈ H
}

.

(1)
Eachfn ∈ F defines a classifierhfn = sign(fn) and for simplicity the generalization
error L (hfn) is denoted byL (fn). Then the training error is denoted byLn (fn) =
1/n

∑n
i=1 I[hfn (Xi)6=Yi]. DefineZ (f) = −f (X)Y andZi (f) = −f (Xi)Yi. Instead of

minimizing the indicator of misclassification (I[−f(X)Y >0]), boosting methods are shown
to effectively minimize a smooth convex cost function ofZ(f). For instance, Adaboost
is based on the exponential function. Consider a positive, differentiable, strictly in-
creasing, and strictly convex functionφ : R → R+ and assume thatφ (0) = 1 and
that limx→−∞ φ (x) = 0. The corresponding cost function and empirical cost func-
tion are respectivelyC (f) = Eφ (Z (f)) andCn (f) = 1/n

∑n
i=1 φ (Zi (f)) . Note that

L (f) ≤ C (f), sinceI[x>0] ≤ φ (x).



The iterative aspect of boosting methods is ignored to consider only their performing an
(approximate) minimization of the empirical cost function or, as we shall see, a series of
cost functions. To avoid overfitting, the following regularization procedure is developed for
the choice of the cost functions. Defineφλ such that∀λ > 0 φλ (x) = φ (λx) . The cor-
responding empirical and expected cost functions becomeCλ

n (f) = 1
n

∑n
i=1 φλ (Zi (f))

andCλ (f) = Eφλ (Z (f)) . The minimization of a series of cost functionsCλ over the
convex hull ofH is then analyzed.

3.2 Statistical Convergence

The nature of the sampling intervenes in the following two lemmas that relate the empirical
costCλ

n (f) and true costCλ (f).
Lemma 1. Suppose that for anyn, the training data (X1, Y1) , . . . (Xn, Yn) comes from
a stationary algebraicallyβ-mixing sequence withβ-mixing coefficientsβ (m) satisfying
β (m) = O (m−rβ ), m ∈ N andrβ a positive constant. Then for anyλ > 0 andb ∈ [0, 1),

E sup
f∈F

|Cλ (f)− Cλ
n (f) | ≤ 4λφ′ (λ)

c1

n(1−b)/2
+ 2φ (λ)

( 1
nb(1+rβ)−1

+
2

n1−b

)
. (2)

Lemma 2. Let the training data be as in Lemma 1. For anyb ∈ [0, 1), andα ∈ (0, 1− b),
let εn = 3(2c1 + nα/2)λφ′(λ)/n(1−b)/2. Then for anyλ > 0

P
(

sup
f∈F

|Cλ (f)− Cλ
n (f) | > εn

) ≤ exp(−4c2n
α) + O(n1−b(rβ+1)). (3)

The constantsc1 andc2 in the above lemmas are given in the proofs of Lemma 1 (Sec-
tion 4.2) and Lemma 2 (Section 4.3) respectively.

3.3 Consistency Result

The following summarizes the assumptions that are made to prove consistency.

Assumption 1.
I- Properties of the sample sequence:The samples(X1, Y1) , . . . , (Xn, Yn) are assumed
to come from a stationary algebraicallyβ-mixing sequence withβ-mixing coefficients
βX,Y (n) = O (n−rβ ), rβ being a positive constant.
II- Properties of the cost functionφ: φ is assumed to be a differentiable, strictly convex,
strictly increasing cost function such thatφ (0) = 1 andlimx→−∞ φ (x) = 0.
III- Properties of the base hypothesis space:H has finite VC dimension. The distri-
bution of (X,Y ) and the classH are such thatlimλ→∞ inff∈λF C (f) = C∗, where
λF = {λf : f ∈ F} andC∗ = inf C (f) over all measurable functionsf : X → R.
IV- Properties of the smoothing parameter:We assume thatλ1, λ2, . . . is a sequence
of positive numbers satisfyingλn → ∞ as n → ∞, and that there exists a constant
c ∈ (

1
1+rβ

, 1
)

such thatλnφ′ (λn) /n(1−c)/2 → 0 asn →∞.

Call f̂λ
n the function inF which approximatively minimizesCλ

n (f), i.e. f̂λ
n is such that

Cλ
n(f̂λ

n ) ≤ inff∈F Cλ
n (f) + εn = inff∈F 1

n

∑n
i=1 φλ (Zi (f)) + εn, with εn → 0 as

n →∞. The main result is the following.

Theorem 1. Consistency of regularized boosting methods for stationaryβ-mixing se-
quences. Let fn = f̂λn

n ∈ F , where f̂λn
n (approximatively) minimizesCλn

n (f) . Un-
der Assumption 1,limn→∞ L (hfn = sign (fn)) = L∗ almost surely andhfn is strongly
Bayes-risk consistent.

Cost functions satisfying Assumption 1.II include the exponential function and the logit
functionlog2(1 + ex). Regarding Assumption 1.II, the reader is referred to [4](Remark on



(denseness assumption)). In Assumption 1.IV, notice that the nature of sampling leads to
a generalization of the condition on the growth ofλnφ′ (λn) already present in the i.i.d.
setting [4]. More precisely, the nature of sampling manifests through parameterc, which is
limited by rβ . The assumption thatrβ is known is quite strict but cannot be avoided (for
instance this assumption is widely made in the field of time series analysis). On a positive
note, if unknown,rβ can be determined for various classes of processes as mentioned
Section 2.1.

4 Proofs

4.1 Preparation to the Proofs: the Blocking Technique
The key issue resides in upper bounding

sup
f∈F

∣∣Cλ
n (f)− Cλ (f)

∣∣ = sup
f∈F

∣∣∣1/n

n∑

i=1

φ (−λf (Xi)Yi)− Eφ (−λf (X1) Y1)
∣∣∣, (4)

whereF is given by (1). LetW = (X, Y ), Wi = (Xi, Yi). Define the functiongλ by
gλ (W ) = gλ (X, Y ) = φ (−λf (X) Y ) and the classGλ by Gλ = {gλ : gλ (X,Y ) =
φ (−λf (X)Y ) , f ∈ F} . Then (4) can be rewritten as

supf∈F
∣∣Cλ

n (f)− Cλ (f)
∣∣ = supgλ∈Gλ

∣∣∣n−1
∑n

i=1 gλ (Wi)− Egλ (W1)
∣∣∣.

Note that the classGλ is uniformly bounded byφ (λ). Besides, ifH is a class of measurable
functions, thenGλ is also a class of measurable functions, by measurability ofF .

As theWi’s are not i.i.d, we propose to use the blocking technique developed in [12, 14] to
construct i.i.d blocks of observations which are close in distribution to the original sequence
W1, . . . , Wn. This enables us to work on the sequence of independent blocks instead of the
original sequence. We use the same notation as in [12]. The protocol is the following. Let
(bn, µn) be a pair of integers, such that

(n− 2bn) ≤ 2bnµn ≤ n. (5)

Divide the segmentW1 = (X1, Y1) , . . . ,Wn = (Xn, Yn) of the mixing sequence into
2µn blocks of sizebn, followed by a remaining block (of size at most2bn). Con-
sider the odd blocks only. If their sizebn is large enough, the dependence between
them is weak, since two odd blocks are separated by an even block of the same size
bn. Therefore, the odd blocks can be approximated by a sequence of independent blocks
with the same within-block structure. The same holds if we consider the even blocks.
Let (ξ1, . . . , ξbn

) , (ξbn+1, . . . , ξ2bn
) , . . . ,

(
ξ(2µn−1)bn

, . . . , ξ2µnbn

)
be independent blocks

such that
(
ξjbn+1, . . . , ξ(j+1)bn

)
=D

(
Wjbn+1, . . . , W(j+1)bn

)
, for j = 0, . . . , µn − 1.

For j = 1, . . . , 2µn, and anyg ∈ Gλ, define
Zj,g :=

∑jbn

i=(j−1)bn+1 g (ξi)− bnEg (ξ1) , Z̃j,g :=
∑jbn

i=(j−1)bn+1 g (Wi)− bnEg (W1) .

LetOµn = {1, 3, . . . , 2µn − 1} andEµn = {2, 4, . . . , 2µn}.
Define Zi,j(f) as Zi,j(f) := −f

(
ξ(2j−2)bn+i,1

) · ξ(2j−2)bn+i,2, where ξk,1 and ξk,2

are respectively the 1st and 2nd coordinate of the vectorξk. These correspond to the
Zk(f) = −f (Xk)Yk for k in the odd blocks1, ..., bn, 2bn + 1, ..., 3bn, ....

4.2 Proof sketch of Lemma 1
A. Working with Independent Blocks. We show that

E sup
g∈Gλ

∣∣∣ 1
n

n∑

i=1

g (Wi)−Eg (W1)
∣∣∣ ≤ 2E sup

g∈Gλ

∣∣∣ 1
n

∑

j∈Oµn

Zj,g

∣∣∣+φ (λ)
(
µnβW (bn)+

2bn

n

)
.

(6)



Proof. Without loss of generality, assume thatEg (W1) = Eg (ξ1) = 0.

Then,E supg

∣∣∣ 1
n

∑n
i=1 g (Wi)

∣∣∣ = E supg

∣∣∣ 1
n

(∑
Oµn

Z̃j,g +
∑
Eµn

Z̃j,g + R
) ∣∣∣, whereR

is the remainder term consisting of a sum of at most2bn terms. Noting that∀g ∈
Gλ, |g| ≤ φ (λ), it follows thatE supg | 1n

∑n
i=1 g (Wi) | ≤ E(supg | 1n

∑
Oµn

Z̃j,g|) +

E(supg | 1n
∑
Eµn

Z̃j,g|) + φ(λ)(2bn)
n . We use the following intermediary lemma.

Lemma 3 (adapted from [15], Lemma 4.1). Call Q the distribu-
tion of (W1, . . . , Wbn ,W2bn+1, . . . ,W3bn , . . .) and Q̃ the distribution of
(ξ1, . . . , ξbn , ξ2bn+1, . . . , ξ3bn , . . .). For any measurable functionh on Rbnµn with
boundH, |Qh (W1, . . .) − Q̃h (ξ1, . . .) | ≤ H (µn − 1) βW (bn) . The same result holds
for (Wbn+1, . . . , W2bn

,W3bn+1, . . . ,W4bn
. . .).

Using this withh(W1, . . .) = supg | 1n
∑
Oµn

Z̃j,g| andh(Wbn+1 , . . .) = supg | 1n
∑
Eµn

Z̃j,g|
respectively, and noting thatH = φ (λ) /2, we have E supg | 1n

∑n
i=1 g (Wi) | ≤

E supg | 1n
∑
Oµn

Zj,g|+ φ(λ)
2

µnβW (bn)+E supg | 1n
∑
Eµn

Zj,g|+ φ(λ)
2

µnβW (bn)+ φ(λ)(2bn)
n

.

As theZj,g ’s from odd and even blocks have the same distribution, we obtain (6). ut
B. Symmetrization. The odd blocksZj,g ’s being independent, we can use the standard
symmetrization techniques. LetZ ′j,g ’s be i.i.d. copies of theZj,g ’s. Let Z ′i,j(f)’s be the
corresponding copies of theZi,j(f). Let (σi) be a Rademacher sequence, i.e. a sequence
of independent random variables taking the values±1 with probability1/2. Then by [16],
Lemma 6.3 (Proof is omitted due to space constraints), we have

E sup
g

∣∣∣ 1
n

∑

j∈Oµm

Zj,g

∣∣∣ ≤ E sup
g

∣∣∣ 1
n

∑

j∈Oµn

σj

(
Zj,g − Z ′j,g

) ∣∣∣. (7)

C. Contraction Principle. We now show that

E sup
g∈Gλ

∣∣∣ 1
n

∑

j∈Oµn

Zj,g

∣∣∣ ≤ 2 · bnλφ′ (λ)E sup
f∈F

∣∣∣ 1
n

µn∑

j=1

σjZ1,j(f)
∣∣∣. (8)

Proof. As Zj,g =
∑bn

i=1 φλ(Zi,j(f)), and theZi,j(f)’s andZ ′i,j(f)’s are i.i.d., with (7)
E supg

∣∣ 1
n

∑
j∈Oµn

Zj,g

∣∣ ≤ E supg

∣∣ 1
n

∑µn

j=1 σj

∑bn

i=1

(
φλ (Zi,j(f))− φλ

(
Z ′i,j(f)

)) ∣∣ ≤
2bnE supg

∣∣1
n

∑µn

j=1 σj (φλ (Z1,j(f))−1)
∣∣. By applying the “Comparison Theorem”, The-

orem 7 in [17], to the contractionψ (x) = (1/λφ′ (λ)) (φλ (x)− 1), we obtain (8). ut
D. Maximal Inequality. We show that there exists a constantc1 > 0 such that

E sup
f∈F

∣∣∣ 1
n

µn∑

j=1

σjZ1,j(f)
∣∣∣ ≤ c1

√
µn

n
. (9)

Proof. Denote(h1, . . . , hN ) by hN
1 . One can writeE supf∈F | 1n

∑µn

j=1 σjZ1,j(f)| =
1
nE supN≥1 suphN

1 ∈HN supα1,...,αN
|∑µn

j=1

∑N
k=1 αkσjξ(1,j),2hk

(
ξ(2j−2)bn+1,1

) |. Since
ξ(2j−2)bn+1,2 andξ(2j′−2)bn+1,2 are i.i.d. for allj 6= j′ (they come from different blocks),
and (σj) is a Rademacher sequence, then

(
σjξ(2j−2)bn+1,2hk

(
ξ(2j−2)bn+1,1

))
j=1,...,µn

has the same distribution as
(
σjhk

(
ξ(2j−2)bn+1,1

))
j=1,...,µn

. Hence

E sup
f∈F

∣∣∣∣
1

n

µn∑
j=1

σjZ1,j(f)

∣∣∣∣ =
1

n
E sup

N≥1
sup

hN
1 ∈HN

sup
α1,...,αN

∣∣∣∣
µn∑
j=1

N∑

k=1

σjαkhk

(
ξ(2j−2)bn+1,1

) ∣∣∣∣.

By the same argument as used in [4], p.53 on the maximum of a linear function over
a convex polygon, the supremum is achieved whenαk = 1 for somek. Hence we get



E supf∈F
∣∣∣ 1
n

∑µn

j=1 σjZ1,j(f)
∣∣∣ = 1

nE suph∈H
∣∣∣ ∑µn

j=1 σjh
(
ξ(1,j),1

) ∣∣∣. Noting that for all

j 6= j′, h(ξ(2j−2)bn+1,1) andh(ξ(2j′−2)bn+1,1) are i.i.d. and that Rademacher processes
are sub-gaussian, we have by [18], Corollary 2.2.8

1

n
E sup

h∈H

∣∣∣∣
µn∑
j=1

σjh
(
ξ(2j−2)bn+1,1

) ∣∣∣∣ ≤ 1

n
E sup

h∈H∪{0}

∣∣∣∣
µn∑
j=1

σjh
(
ξ(2j−2)bn+1,1

) ∣∣∣∣

≤ c′
√

µn

n

∫ ∞

0

(log sup
P

N (ε, ρ2,Pn ,H ∪ {0}))1/2dε,

wherec′ is a constant andN (ε, ρ2,Pn
,H ∪ {0}) is the empiricalL2 covering number.

As H has finite VC-dimension (see Assumption 1.III), there exists a positive constant
w such thatsupP N(ε, ρ2,Pn

,H ∪ {0}) = OP (ε−w)(see [18], Theorem 2.6.1). Hence∫∞
0

(log supPn
N (ε, ρ2,Pn

,H ∪ {0}))1/2
dε < ∞. and (9) follows. ut

E. Establishing (2).Combining (6),(8), and (9), we have

E supg∈Gλ

∣∣∣ 1
n

∑n
i=1 g (Wi)− Eg (W1)

∣∣∣ ≤ 4bnλφ′ (λ) c1
√

µn

n + φ (λ)
(
µnβW (bn)+ 2bn

n

)
.

Takebn = nb, with 0 ≤ b < 1. By (5), we obtainµn ≤ n1−b/2. Besides, as we assumed
that the sequenceW is algebraicallyβ-mixing (see Definition 2),βW (n) = O (n−rβ ).
ThenµnβW (bn) = O

(
n1−b(1+rβ)

)
, and we arrive at (2).

4.3 Proof Sketch of Lemma 2
A. Working with Independent Blocks and Symmetrization. For anyb ∈ [0, 1), α ∈
(0, 1− b), let

εn = 3(2c1 + nα/2)λφ′(λ)/n(1−b)/2. (10)
We show
P
(

sup
g∈Gλ

∣∣∣ 1
n

n∑

i=1

g (Wi)−Eg (W1)
∣∣∣ > εn

)
≤ 2P

(
sup
g∈Gλ

∣∣∣ 1
n

∑

j∈Oµn

Zj,g

∣∣∣> εn/3
)
+O(n1−b(1+rβ)).

(11)
Proof. By [12], Lemma 3.1, we have that for anyεn such thatφ(λ)bn = o(nεn),
P
(
supg∈Gλ

∣∣∣ 1
n

∑n
i=1 g (Wi) − Eg (W1)

∣∣∣ > εn

)
≤ 2P

(
supg∈Gλ

∣∣∣ 1
n

∑
j∈Oµn

Zj,g

∣∣∣ >

εn/3
)

+ 4µnβW (bn). Setbn = nb, with 0 ≤ b < 1. ThenµnβW (bn) = O(n1−b(1+rβ))
(for the same reasons as in Section 4.2 E.). Withεn as in (10), and since Assumption 1.II
implies thatλφ′(λ) ≥ φ(λ)− 1, we automatically obtainφ(λ)bn = o(nεn). ut
B. McDiarmid’s Bounded Difference Inequality. Forεn as in (10), there exists a constant
c2 > 0 such that,

P
(

sup
g∈Gλ

∣∣∣ 1
n

∑

j∈Oµn

Zj,g

∣∣∣ > εn/3
)
≤ exp(−4c2n

α). (12)

Proof. TheZj,g ’s of the odd block being independent, we can apply McDiarmid’s bounded
difference inequality ([19], Theorem 9.2 p.136) on the functionsupg∈Gλ

| 1n
∑

j∈Oµn
Zj,g|

which depends ofZ1,g, Z3,g . . . , Z2µn−1,g. Noting that changing the value of one variable
does not change the value of the function by more thatbnφ (λ) /n,we obtain withbn = nb

that for allε > 0,
P
(

supg∈Gλ

∣∣∣ 1
n

∑
j∈Oµn

Zj,g

∣∣∣ > E supg∈Gλ

∣∣ 1
n

∑
j∈Oµn

Zj,g

∣∣∣ + ε
)
≤ exp

(
−4ε2n1−b

φ(λ)2

)
.

Combining (8) and (9) from the proof of Lemma 1, and withbn = nb, we have

E supg∈Gλ

∣∣∣ 1
n

∑
j∈Oµn

Zj,g

∣∣∣ ≤ 2λφ′ (λ)C/n(1−b)/2. With ε = nα/2λφ′(λ)/n(1−b)/2, we

obtainεn as in (10). Pickλ0 such that0 < λ0 < λ. Then, sinceλφ′(λ) ≥ φ(λ) − 1, (12)
follows with c2 = (1− 1/φ(λ0))2. ut



C. Establishing (3).Combining (11) and (12) we obtain (3).

4.4 Proof Sketch of Theorem 1
Let f̄λ a function inF minimizingCλ. With fn = f̂λn

n , we have
C (λnfn)− C∗ = (Cλn(f̂λn

n )− Cλn(f̄λn)) + (inff∈λnF C(f)− C∗).
Sinceλn → ∞, the second term on the right-hand side converges to zero by Assump-
tion 1.III. By [19], Lemma 8.2, we haveCλn(f̂λn

n )− Cλn
(
f̄λn

) ≤ 2 supf∈F |Cλn (f)−
Cλn

n (f) |. By Lemma 2,supf∈F |Cλn (f) − Cλn
n (f) | → 0 with probability 1 if, as

n → ∞, λnφ′ (λn) n(α+b−1)/2 → 0 and b > 1/(1 + rβ). Hence if Assumption 1.IV
holds,C (λnfn) → C∗ with probability1. By [4], Lemma 5, the theorem follows.
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