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Abstract

Good-Turing adjustments of word frequencies are an important tochtural language
modeling. In particular, for any sample of words, there is a set of svart occuring in that
sample. The total probability mass of the words not in the sampeisd-called missing mass.
Good showed that the fraction of the sample consisting of words tiwatr@nly once in the
sample is a nearly unbiased estimate of the missing mass. Here, we gyle-prabability
confidence interval for the actual missing mass. More generally, ¥o0, we give a confidence

interval for the true probability mass of the set of words occutittignes in the sample.

1 INTRODUCTION

Since the publication of the Good-Turing estimators in 1pg3these estimators have been used
extensively in language modeling applications [2, 3, 6]spite of the extensive use of Good-Turing
estimators, little theoretical work has been done on thetimators since the original theorems
showing that they have negligible bias. In this paper, weflyrreview the Good-Turing estimators
and then prove new convergence rates, i.e., we give higbapility confidence intervals for the
true values of the estimated quantities.

Perhaps the most significant Good-Turing estimator is thimmate of the missing mass. We
assume that there is some unknown underlying distributioecmme unknown set of objects, e.g.,
an unknown frequency for each word in English. We assumeahstmple is constructed by

drawing objects independently according to this unknovatridiution. If the number of objects



with nonzero probability is infinite then for any finite sampghere will be objects of nonzero
probability that do not occur in the sample. It is well knovwat in any sample of English text
there will be English words not occurring in the sample. Thesing mass of a sample is the
total probability mass of the objects not occurring in thenpke. The Good-Turing estimate of
the missing mass is the fraction of the sample consistingjgfobs that occur exactly once in the
sample. The fundamental Good-Turing result is that thisnege has negligible bias. However, to
our knowledge, the convergence rate of this estimator heereen formally analyzed.

According to Good [5], the Good-Turing estimators were digyed by Alan Turing during
World War Il while breaking Enigma codes. The Enigma was atrygtion device used by the
German navy. The Enigma used, as part of its encryption kélyrege letter sequence. These
three letter sequences were selected from a book contaiflingch sequences in a random order.
However, a person opening the book and selecting an entryike#sto select a previously used
entry, say the entry on the top of a page where the bindingedfttok was creased. Given a sample
of previously used entries, Turing wanted to estimate #hailiood that the current unknown entry
was one that had been previously used, and further, to dstiimaprobability distribution over the
previously used entries. This lead to the development oéttignators of the missing mass and
estimates of the true probability mass of the set of items&imeg 4 times in the sample. Good
worked with Turing during the war and, with Turing’s permdss published the analysis of the
bias of these estimators in 1953. As mentioned above, ttstiseators have now become standard
in a variety of natural language processing applications.

In this paper, we analyze the convergence rate of the Goddgdrastimators. Let be the
fraction of the sample consisting of words that occur onlgeom the sample and |éi/y be the
actual missing mass, i.e., the total probability mass ofitdras not occurring in the sample. We

prove that with probability at least-1§ over the choice of the sample, we have thatis no larger

Go+ O ( —'”(;/5))

wherem is the size of the sample. This is true independent of thernlyidg distribution. We also

than

give a somewhat weaker lower bound dfy and bounds on the true total probability mass of the

set of words occurring times in the sample.



2 THE GOOD-TURING ESTIMATORS

We assume an unknown probability distributi®hon a countablerocabulary V' and we denote
the probability of wordw by P,,. In practice, this is often taken to be the words of some @ahtur
language, such as English, although of course our resdtaplicable when the vocabulary is
any countable universe of objects. We consider a sasipliern words drawn independently from
V according to distributiod”. Throughout the paper, we will writé’.S ®[S] to mean that with
probability at least 1- ¢ over the choice of the sample we have #ha$] holds.

For a sampleS of i words and for any word € V' we definec(w) to be the number of times
word w occurs in the samplg. For any integek > 0, we defineSy, to be the set of worde € V'
such that(w) = k. Note thatSy is the set of words iV’ not occuring inS. We defineM, to be
probability of drawing a word in the sé};:

M= Y Py.
wES

Note thatM, depends on the sample, i.e., it is a random variable.

The Good-Turing estimators estimate the quantifi€s These quantities are conceptually
useful in constructing language models. The quantdyis the so-callednissing mass, i.e., the
total probability mass of words not occuring in the samplguitively, a language model should
reserve some probability mass for words not in the samptesitis unlikely (or even impossible if
the vocabulary is larger than the sample) that all the wardslarge vocabulary will be seen in the
sample. Similarly, fok > 1 the quantitiyM, is useful in estimating the true probability of a word
that occurs: times in the sample. Specifically, far € Sy, if we know My, then a good estimate
of P, would beM;/|Sk|. Fork small, we usually have thd,, is significantly smaller than its
“natural” estimatet|S;|/m. For example, if all words in a large sample occur only onlcentS;
is the entire sample but/; is almost certainly near zero.

The Good-Turing estimate @#, which we denot&,, can be defined as follows:

kE+1
Gk; = m|S}C+1|

Good [4] showed that fok small andmr large this estimate has small bias, that is, the expectation

of Gy, is very close to the expectation df;. We prove a variant of Good’s theorem here:

The Good-turing estimate is often defined to’et| Sy, 11|. Fork much smaller tham: this is essentially the same
as the definition used here. However, the estincfn?gé; |Sk+1| has slighly smaller bias and is theoretically easier to work
with.



Theorem 1 For k& < m we have

ELM;] = E[GH] ~ T2 E (b ).

Proof: Note that HM,] can be written as follows:

E[My] = > PuPrlw e Sy
weV
= ¥ <m> Py (1—py)" "
weV k
= Z Pr[w S Sk+1] ((,].,CI)) (1 — Pw)
wev k+1
E+1
= Z o kPI’[’w S Sk—i—l] (1—Pu,)
weV
k+1
= + Z PI’ w S Sk+1]
m= wEV
_k+1
Z PI’ w € Sk+1]
m= k weV
kE+1 kE+1
= 7 ElSkl] = —— E[My44]
kE+1

= E[Gy] - mE [Mp14] -

Theorem 1 immediately implies that far much smaller thamn we have thatG, is a nearly
unbiased estimate dff;. More specifically, sincé/;1 € [0, 1] we have the following corollary

of Theorem 1.

Corollary 2 For k& < m we have

E[M] —E[Gy| < 211
m—k

Note in particular thatE [Go] — E[Mp] | < 1/m.

It is interesting to note that it is possible to “unwind” thguation in Theorem 1. For example, we
can useGo — G1/m as an improved estimate af. By observing that\/, < 1 we get that the
bias of this improved estimate is at mogi@:(m — 1)). More generally, the bias of an estimator
based on using the equation in Theorend imes will be O(1/m?). However, it seems that the
variance of these estimators is large compared 0,50 reducing the bias bela@(1/m) is not a

significant improvement.



3 CONVERGENCE OF THE GOOD-TURING ESTIMATORS

The first main result of this paper bounds the rate at whichbed-Turing estimators converge.

More specifically, we have the following:

Theorem 3 V§ > 0, V°S,

k42 N 2In(3)

Gy — M| <
G k|_m—k m

kE+1 3m 3m
1_k/m+k+,/2kln <T> +2In<7>].

Note that for fixedk and d, we have that the bound did7;, — M;| converges to zero as
increases at the rat®((Inm)/+/m) independent of the size or distribution of the underlying
vocabulary. Furthermore, the width of the confidence irgkinas only logarithmic dependence on

the confidence paramet&r For k small compared to {8 /¢), the bound is approximately

2n(2) 2" )

1) m

For k large compared to [8m/4), but still small compared te:, the bound is approximately

m

The bound is vacuous fér > /m.

The basic idea behind the proof is to introduce a thresBoddich that, with high confidence,
all wordsw with P,, > © occur more thaik times and hence do notinfluent#,. Given an upper
bound onP,, for words influencing\Z;, we have that a single (plausible) change in the sample can
changeM;. by at most B. Given a bound on the influence of a single sample elementpfand
alsoGy,), we can apply McDiarmid’s theorem which gives a convergenate for any function of
the sample where single changes in the sample have limitegnte.

To establish an appropriate value ®mwe use the following lemma:

Lemma 4 If a biased coin has probability p of being heads, and p is the fraction of times the coin
comes up heads in a sample S of m independent tosses, then we can bound p in terms of p as

follows.

Vo >0 VS p<p+

26In(1/5) , 2In(1/8)

m

Proof: The relative Chernoff bound [1] states the following for> O:
Prip < (1—9)p] <e?™/2

5



Setting this probability equal t®and solving fory we can rephrase this bound as follows:

2pIn(3

We use “high confidence implication” which states thatit ®[S] and®[S] implies W[S], then
v9S WIS]. In particular, consider any sample satisfying the body @f@). The body of Eq. (1)
implies that

m(p — p)? < 2pIn(1/3),
that is,

mp? — (2mp + 2In(1/6))p + mp® < 0,

which implies

(2mp +2In(1/6)) + \/ (2mip + 2In(1/8))? — 4m?}?

P> 2m
. In(1/s6 8mpIn(1/6) + 4In?(1/6
:p+n(/>+\/mpn(/>+2 (1/6)
m 4m
. In(1/s6 25In(1/8)  In?(1/¢6
:p+n(/>+\/pn(/)+n(2/>
m m m
- ﬁ+2ln(1/5)+ 25In(1/6)
m m
completing the proof. [

We now define®(p, ) to be the bound in Lemma 4:

26In(1/5) , 2In(1/3)

O, 0) =p+
We also definé/} as follows:

M) = > P,.
weSy: Py <O(k/m,d/m)

Note thatM] consists of that fragment afZ;, due to “low frequency” words. The frequency
thresholdd(k/m, §/m) is selected so thadtZ? is essentially the same a4 ; with high confidence,
M,g = M), and their expectations differ by at most.



Lemma5 For m > 1 we have that
Vo >0 VS M) = M.
Proof: First we use “union bound quantification” which states th&viis a finite set such that
VeeW Y6 >0 V'S ®z, S, 4]

then
V6 >0 VS Ve e W Dz, S, §/|W|].

This is simply a formulation of the union bound. Applying anibound quantification to Lemma 4
with W being the set of worde such thatP,, > % we get that

V6 >0 VS Yw: Py >~ nge<@,i>. 2)
m m m

By high confidence implication, it now suffices to show thag thody of (2) impliesM,g =
M. Assume the body of (2). To shoM,f = M}, we must show that for any word with
P, > O(k/m, §/m) we havec(w) > k. Letw be any such word. One can check that for
m > 1 we haved(k/m, 6/m) > 1/m. HenceP, > 1/m and so by the body of (2) we have
P, < O(c(w)/m, 6/m). But this implies®(k/m, d/m) < P, < O(c(w)/m, §/m) which

impliesc(w) > k. |
Lemma 6
1
vie[0,1, |E[M]-E[M]|<
Proof: First note the following:

E[M,] — E [M,g] = 3 P,Pr{w € S].
w: Py >0(k/m, 6/m)
It now suffices to show that faP,, > O(k/m, J/m) we have Pfw € S;] < 1/m. Lemma 4 can

Pr {e (C(;’), 3) < Pw} <

m

be rephrased as

For P, > ©(k/m, ¢/m) this implies

o422 £)o(k )] 2

and therefore



So we have Aw € Si] < Pric(w) < k] <d§/m < 1/m. ]

Now that we have established thM,f behaves much likeV/,, we use the fact that a single
change in the sample can not have much influence on the vaﬂa@oﬂ'he following theorem of
McDiarmid [7] states that any function of the sample for whicsingle change in the sample has

limited effect must converge to its expectation as the samets large.

Theorem 7 (McDiarmid) Let X4, ..., X, be independent random variables taking values in a
set V andlet f : V™ — R besuch that
sup If(1, ..oy mm) — f(@1, e T 1, T T 1y e s T | < 5
L1y, T, EV

Then with probability at least 1 — ¢

f(le"' 7Xm) < E[f(X17 7Xm)] +
and with probability at least 1 — §

Lysm .2
F(Xa o) Xo) > ELf (X, Xo)] — 1) @) Ziza e

A natural special case is; € [0,1] and f(z1, ...,z,) = it 1 z;. Inthis caseg; = 1/m and

1
m

McDiarmid’s theorem reduces to the Heoffding inequalities

The “union bound conjunction principle” states that, foy gositive numberg andk, if
V6 >0 V'S & [5, ﬂ

and
V6 >0 VS w[s, %}
then
5 ) )
Vo >0 VS (DS, — | AWI|S, ——|].
k+3 k+j
This can be rephrased equivalently to say that if

Vo >0 V0S5 @[S, 4]

and
Vo >0 VS WS, 4]
then

Vs >0 YUtKIg (@[S, 8] AW[S, 4))

8



which clearly follows from the union bound.

Applying union bound conjunction to the two conclusions inDlarmid’s theorem gives that,
with probability at least 1- 6,

2ysm 2
F(Xareey X) —E[f(Xa, .o, X)) < D222 @

Using Eg. (3) we can prove the following:

Lemma 8 Vé > 0, forall’S,

(G — M) —E[Gy - M]]| < (% e (% %)) 2mn @)
Proof: We apply Eq. (3) with being the vocabulary of possible words akigbeing theith word
in the sample. We takg(X3,..., X,) to beG), — M,. Note that when a word is replaced in the
sample, one word increases its count while another worcedses its count. This implies that a
single replacement can chandg | by at most 2. So a single replacement can chargéy at

most 2k + 1)/(m — k). A single replacement can changg by at most ®(k/m, /m). So a
single change in the sample can chagge- M, by at most

2(—k+1 +e(ﬁ, ).
m—k m’m
Eq. (3) then implies the lemma. [

Proof of Theorem 3: We apply union bound conjunction to lemmas 5 and 8 Wjt8 inserted for
~ in Lemma 8. We then get that the following holds with probigp#t least 1— ¢:

G = M| = |G — M|

IN

SORSG|

k+1 k0 3

< [E[GH] - EIM,]| + |E[M°] — E[My]]
kE+1 kK 6 3
+<m+@<g, %>> 2mIn (5)
RS
-~ m—k m
+1 kK 6 3
<

2 (ot £)) o)
m—k m—k m’ 3m m )



k+2

m—k
2In(3) E+1 3m 3m
e R 1 (5) +2n ()|
This inequality is trivially true whem: = 1 and Theorem 3 follows. ]

4 ATIGHTER UPPER BOUND ON THE MISSING MASS

In the case of the missing maa#, it is possible to give a significantly tighter upper boundrth

that given in Theorem 3, namely, the following:

In(

W

) .

Theorem 9 V§ >0 V°S My < Go + (2V2+ V3)

Note that this bound only applies to one of the tails. It ramea@ipen whether a similar bound holds
on the other tail as well.

To prove this theorem, we divide into a high frequency componehf, and a low frequency
component\/, as follows:

My = > P,
w:Py>1/m, ¢(w)=0

> P,.

w:Py<1/m, c(w)=0

My

We prove the following two lemmas seperately:

Sq ., [3nG)

Lemmal1l0 Vo >0 V°S MogE[MO]Jr .

; 2In(})

Lemmall¥s >0 V'S My <E[Mg]+ 8,
m

Lemma 11 follows from an application of McDiarmid’s theoremd the observation that a single
change in the sample can changg by at most 2. Lemma 10 is more involved and is proved
at the end of this section. Note théfy = My + MO+ and hence, by union bound conjunction,
Lemmas 10 and 11 together imply that

In(%)'

¥ >0 V'S Mo < E[Mo] + (V2+V3) (4)

We also need the following two lemmas where the first follovesrf Theorem 1 and the second

follows from an application of McDiarmid's theorem €:

10



Lemma 12 E[Mj] < E[Gq].

2In(2
Lemma 13 V6 > 0 V'S E[Go] < Go + 1] 20

Theorem 9 now follows by applying union bound conjunctiofEtp (4) and Lemma 13 so that the
bodies of Eg. (4), Lemma 12 and Lemma 13 all hold simultankous
It now remains only to prove Lemma 10. The proof is based omiiiies method. The first

step is to prove the following:
Lemma 14 For A > Oand e > O we have
PI’[MJ >E [MJ'] + e] < ') —Ae

where

F()‘) = Z (In(Qwe/\Pw + (1 - Qw)) - /\Pwa)

w: Py>1/m

and Q,, = (1 — P,)™ isthe probability that word w does not occur in the sample.
Proof: In Chernoff's method, we bound the tail probability usingrikta/’s inequality:

PriMg >E[Mg]+e| = Prlexp(A(Mg —E [M{]| - €)) > 1]
< E[exp(A(Mar - E[M(ﬂ —e))]
= PEME] gl (5)

LetB ={w eV : P, >1/m}. Foreachwordv € B, we introduce a random variabl,, which

is 1 if w doesnot occur in the sample and 0 otherwise. We can then viiige as

Mg = > XyPy.
weB

Clearly, E[ X ] = Q, SO
E[My] = Y QuPu. (6)

weB
Now

N exp(A > Pwa>

weB

_ H APuXuw

weB

= I (1+ (e -1) xu) (7)

weB

11



where the last equality uses the fact that € {0, 1}. Multiplying out the product, we can write
Eq. (7) as a polynomial:

IT (1+ (M =1 Xy) = > ea [T Xu (8)

weB ACB weA

for some coefficients,. Furthermore, becausdé’,, > 0, all of the coefficients, are nonnegative.
Note that[ ], . 4 Xy, is 1 if none of the words in A occur in the samplé and is O otherwise.
Thus,

fne] - (5

weA weA

< (H(l—Pw>>m

weA

= H Qu- )

weA

The inequality here can be proved by induction dpusing the factthat+ p — ¢ < (1—p)(1—q)
for p,q > 0. Thus, combining Egs. (7), (8) and (9) gives

E[M] = 3 cuE KH X,,J)]

ACB weA

> ea]] Qu

ACB weA

- 1I (1+ (e“’w —1) Qw).

weB

IN

Combined with Egs. (5) and (6) this gives
PriMg > E[M{] +¢|

< exp(—Ae -2 Pwa> :

weB
I (s (-1
weB

= eF(/\)_AE‘

Next we prove the following bound on the functidi{\):
Lemma 15 For A < m/2

AZ

PO S

12



Proof: First, note that?’(0) = 0. Now let F’(\) denote the first derivative oF, i.e., dF//d\

evaluated ah. Then

/ Qwa
F'(\) = — QuPu
( ) w: Pg;l/m (1 a Qw)e_/\Pw + Qw Q

Note thatF’(0) = 0. Now letting 7"’ () denote the second derivative Bfwe get that
2(1 _ APy
F,l(>\) _ Z QU/Pw(l igp’w)e 5
w: Py>1/m [(1 - Qw)e_ w Qw]
Z Qquf;(l - Qw)e_)\Pw

S 7
w: Postym (1= Qu)e o]
-y _ QuPi
w: Py>1/m (1 o Qw)e_/\Pw
_ Z P, QuPye
w: Py>1/m ( Qw)
Pyet—mPu
< Py———i—
w: Pz>:1/m (1 Qw)
Pye (A—m) Py
< Py———7+—
IR T

where the last two inequalities use the inequality = (1 — P,)™ < e~™P« which is at most le

for P, > 1/m. Fora > 0 andz > 0 one can show, by maximizing over that
1

e M <
e

For A < m, we can use this inequality witla = (m — ) and get that

Y 1
s 2 R hm ey
1
(e—=1)(m—N)
Since\ < m/2 we then have that ,
F"()\) < e Dm’
The lemma now follows fron#'(0) = 0, F'(0) = 0 andF"(\) < 2/(e — 1)m. |

Proof of Lemma 10: Let A = me/2. Lemmas 14 and 15 together imply that

Pr[MJZE[MJ]Jre] < exp(ﬁ—k)

— ex mfz . mﬁz
- P e 2

< efm52/3

13



Lemma 10 now follows by setting this probability equabtand solving fore. This completes the

proof of Theorem 9. ]
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