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Abstract

Good-Turing adjustments of word frequencies are an important tool in natural language

modeling. In particular, for any sample of words, there is a set of words not occuring in that

sample. The total probability mass of the words not in the sample is the so-called missing mass.

Good showed that the fraction of the sample consisting of words that occur only once in the

sample is a nearly unbiased estimate of the missing mass. Here, we give a high-probability

confidence interval for the actual missing mass. More generally, fork � 0, we give a confidence

interval for the true probability mass of the set of words occuringk times in the sample.

1 INTRODUCTION

Since the publication of the Good-Turing estimators in 1953[4], these estimators have been used

extensively in language modeling applications [2, 3, 6]. Inspite of the extensive use of Good-Turing

estimators, little theoretical work has been done on these estimators since the original theorems

showing that they have negligible bias. In this paper, we briefly review the Good-Turing estimators

and then prove new convergence rates, i.e., we give high-probability confidence intervals for the

true values of the estimated quantities.

Perhaps the most significant Good-Turing estimator is the estimate of the missing mass. We

assume that there is some unknown underlying distribution on some unknown set of objects, e.g.,

an unknown frequency for each word in English. We assume thata sample is constructed by

drawing objects independently according to this unknown distribution. If the number of objects
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with nonzero probability is infinite then for any finite sample there will be objects of nonzero

probability that do not occur in the sample. It is well known that in any sample of English text

there will be English words not occurring in the sample. The missing mass of a sample is the

total probability mass of the objects not occurring in the sample. The Good-Turing estimate of

the missing mass is the fraction of the sample consisting of objects that occur exactly once in the

sample. The fundamental Good-Turing result is that this estimate has negligible bias. However, to

our knowledge, the convergence rate of this estimator has never been formally analyzed.

According to Good [5], the Good-Turing estimators were developed by Alan Turing during

World War II while breaking Enigma codes. The Enigma was an encryption device used by the

German navy. The Enigma used, as part of its encryption key, athree letter sequence. These

three letter sequences were selected from a book containingall such sequences in a random order.

However, a person opening the book and selecting an entry waslikely to select a previously used

entry, say the entry on the top of a page where the binding of the book was creased. Given a sample

of previously used entries, Turing wanted to estimate the likelihood that the current unknown entry

was one that had been previously used, and further, to estimate the probability distribution over the

previously used entries. This lead to the development of theestimators of the missing mass and

estimates of the true probability mass of the set of items occuring k times in the sample. Good

worked with Turing during the war and, with Turing’s permission, published the analysis of the

bias of these estimators in 1953. As mentioned above, these estimators have now become standard

in a variety of natural language processing applications.

In this paper, we analyze the convergence rate of the Good-Turing estimators. LetG0 be the

fraction of the sample consisting of words that occur only once in the sample and letM0 be the

actual missing mass, i.e., the total probability mass of theitems not occurring in the sample. We

prove that with probability at least 1� � over the choice of the sample, we have thatM0 is no larger

than

G0 +O

0

@

s

ln(1=�)
m

1

A

wherem is the size of the sample. This is true independent of the underlying distribution. We also

give a somewhat weaker lower bound onM0 and bounds on the true total probability mass of the

set of words occurringk times in the sample.
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2 THE GOOD-TURING ESTIMATORS

We assume an unknown probability distributionP on a countablevocabulary V and we denote

the probability of wordw by P
w

. In practice, this is often taken to be the words of some natural

language, such as English, although of course our results are applicable when the vocabulary is

any countable universe of objects. We consider a sampleS of m words drawn independently from

V according to distributionP . Throughout the paper, we will write8�S Φ[S] to mean that with

probability at least 1� � over the choice of the sample we have thatΦ[S] holds.

For a sampleS of m words and for any wordw 2 V we definec(w) to be the number of times

wordw occurs in the sampleS. For any integerk � 0, we defineS
k

to be the set of wordsw 2 V

such thatc(w) = k. Note thatS0 is the set of words inV not occuring inS. We defineM
k

to be

probability of drawing a word in the setS
k

:

M

k

�

X

w2S

k

P

w

:

Note thatM
k

depends on the sample, i.e., it is a random variable.

The Good-Turing estimators estimate the quantitiesM

k

. These quantities are conceptually

useful in constructing language models. The quantityM0 is the so-calledmissing mass, i.e., the

total probability mass of words not occuring in the sample. Intuitively, a language model should

reserve some probability mass for words not in the sample since it is unlikely (or even impossible if

the vocabulary is larger than the sample) that all the words in a large vocabulary will be seen in the

sample. Similarly, fork � 1 the quantitiyM
k

is useful in estimating the true probability of a word

that occursk times in the sample. Specifically, forw 2 S

k

, if we knowM

k

, then a good estimate

of P
w

would beM
k

=jS

k

j. For k small, we usually have thatM
k

is significantly smaller than its

“natural” estimatekjS
k

j=m. For example, if all words in a large sample occur only once, thenS1

is the entire sample butM1 is almost certainly near zero.

The Good-Turing estimate ofM
k

, which we denoteG
k

, can be defined as follows:1

G

k

�

k + 1
m� k

jS

k+1j:

Good [4] showed that fork small andm large this estimate has small bias, that is, the expectation

of G
k

is very close to the expectation ofM
k

. We prove a variant of Good’s theorem here:

1The Good-turing estimate is often defined to bek+1
m

jS

k+1j. Fork much smaller thanm this is essentially the same

as the definition used here. However, the estimatek+1
m�k

jS

k+1j has slighly smaller bias and is theoretically easier to work

with.
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Theorem 1 For k < m we have

E[M
k

] = E[G
k

] �
k + 1
m� k

E
�

M

k+1
�

:

Proof: Note that E[M
k

] can be written as follows:

E[M
k

] =

X

w2V

P

w

Pr[w 2 S

k

]

=

X

w2V

 

m

k

!

P

k+1
w

(1� P

w

)

m�k

=

X

w2V

Pr
�

w 2 S

k+1
�

�

m

k

�

�

m

k+1

�

(1� P

w

)

=

X

w2V

k + 1
m� k

Pr
�

w 2 S

k+1
�

(1� P

w

)

=

k + 1
m� k

X

w2V

Pr
�

w 2 S

k+1
�

�

k + 1
m� k

X

w2V

Pr
�

w 2 S

k+1
�

P

w

=

k + 1
m� k

E
�

jS

k+1j
�

�

k + 1
m� k

E
�

M

k+1
�

= E[G
k

] �
k + 1
m� k

E
�

M

k+1
�

:

Theorem 1 immediately implies that fork much smaller thanm we have thatG
k

is a nearly

unbiased estimate ofM
k

. More specifically, sinceM
k+1 2 [0;1] we have the following corollary

of Theorem 1.

Corollary 2 For k < m we have

jE[M
k

] � E[G
k

] j �
k + 1
m� k

:

Note in particular thatjE[G0] � E[M0] j � 1=m.

It is interesting to note that it is possible to “unwind” the equation in Theorem 1. For example, we

can useG0 � G1=m as an improved estimate ofM0. By observing thatM2 � 1 we get that the

bias of this improved estimate is at most 2=(m(m� 1)). More generally, the bias of an estimator

based on using the equation in Theorem 1d times will beO(1=md

). However, it seems that the

variance of these estimators is large compared to 1=m, so reducing the bias belowO(1=m) is not a

significant improvement.
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3 CONVERGENCE OF THE GOOD-TURING ESTIMATORS

The first main result of this paper bounds the rate at which theGood-Turing estimators converge.

More specifically, we have the following:

Theorem 3 8� > 0, 8�S,

jG

k

�M

k

j �

k + 2
m� k

+

s

2 ln(3
�

)

m

�

"

k + 1
1� k=m

+ k +

s

2k ln
�

3m
�

�

+ 2 ln
�

3m
�

�

#

:

Note that for fixedk and �, we have that the bound onjG
k

� M

k

j converges to zero asm

increases at the rateO((lnm)=

p

m) independent of the size or distribution of the underlying

vocabulary. Furthermore, the width of the confidence interval has only logarithmic dependence on

the confidence parameter�. Fork small compared to ln(3m=�), the bound is approximately

2 ln
�

3m
�

�

v

u

u

t

2 ln
�

3
�

�

m

:

Fork large compared to ln(3m=�), but still small compared tom, the bound is approximately

2k

v

u

u

t

2 ln
�

3
�

�

m

:

The bound is vacuous fork �
p

m.

The basic idea behind the proof is to introduce a thresholdΘ such that, with high confidence,

all wordsw with P
w

> Θ occur more thank times and hence do not influenceM
k

. Given an upper

bound onP
w

for words influencingM
k

we have that a single (plausible) change in the sample can

changeM
k

by at most 2Θ. Given a bound on the influence of a single sample element onM

k

(and

alsoG
k

), we can apply McDiarmid’s theorem which gives a convergence rate for any function of

the sample where single changes in the sample have limited influence.

To establish an appropriate value forΘ we use the following lemma:

Lemma 4 If a biased coin has probability p of being heads, and p̂ is the fraction of times the coin

comes up heads in a sample S of m independent tosses, then we can bound p in terms of p̂ as

follows.

8� > 0 8

�

S p � p̂+

s

2p̂ ln(1=�)
m

+

2 ln(1=�)
m

:

Proof: The relative Chernoff bound [1] states the following for > 0:

Pr
�

p̂ < (1� )p

�

� e

�pm

2
=2
:
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Setting this probability equal to� and solving for we can rephrase this bound as follows:

8

�

S p� p̂ �

s

2p ln(1
�

)

m

: (1)

We use “high confidence implication” which states that if8

�

S Φ[S] andΦ[S] impliesΨ[S], then

8

�

S Ψ[S]. In particular, consider any sample satisfying the body of Eq. (1). The body of Eq. (1)

implies that

m(p� p̂)

2
� 2p ln(1=�);

that is,

mp

2
� (2mp̂+ 2 ln(1=�))p +mp̂

2
� 0;

which implies

p �

(2mp̂+ 2 ln(1=�)) +
q

(2mp̂+ 2 ln(1=�))2
� 4m2

p̂

2

2m

= p̂+

ln(1=�)
m

+

s

8mp̂ ln(1=�) + 4 ln2
(1=�)

4m2

= p̂+

ln(1=�)
m

+

s

2p̂ ln(1=�)
m

+

ln2
(1=�)
m

2

� p̂+

2 ln(1=�)
m

+

s

2p̂ ln(1=�)
m

completing the proof.

We now defineΘ(p̂; �) to be the bound in Lemma 4:

Θ(p̂; �) � p̂+

s

2p̂ ln(1=�)
m

+

2 ln(1=�)
m

:

We also defineM �

k

as follows:

M

�

k

�

X

w2S

k

: P
w

�Θ(k=m;�=m)

P

w

:

Note thatM �

k

consists of that fragment ofM
k

due to “low frequency” words. The frequency

thresholdΘ(k=m; �=m) is selected so thatM �

k

is essentially the same asM
k

; with high confidence,

M

�

k

= M

k

and their expectations differ by at most 1=m.
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Lemma 5 For m > 1 we have that

8� > 0 8

�

S M

�

k

= M

k

:

Proof: First we use “union bound quantification” which states that if W is a finite set such that

8x 2W 8� > 0 8

�

S Φ[x; S; �]

then

8� > 0 8

�

S 8x 2W Φ[x; S; �=jW j]:

This is simply a formulation of the union bound. Applying union bound quantification to Lemma 4

with W being the set of wordsw such thatP
w

>

1
m

, we get that

8� > 0 8

�

S 8w : P
w

>

1
m

; P

w

� Θ
�

c(w)

m

;

�

m

�

: (2)

By high confidence implication, it now suffices to show that the body of (2) impliesM �

k

=

M

k

. Assume the body of (2). To showM �

k

= M

k

we must show that for any wordw with

P

w

> Θ(k=m; �=m) we havec(w) > k. Let w be any such word. One can check that for

m > 1 we haveΘ(k=m; �=m) > 1=m. HenceP
w

> 1=m and so by the body of (2) we have

P

w

� Θ(c(w)=m; �=m). But this impliesΘ(k=m; �=m) < P

w

� Θ(c(w)=m; �=m) which

impliesc(w) > k.

Lemma 6

8� 2 [0;1];
�

�

�

E[M
k

] � E
h

M

�

k

i

�

�

�

�

1
m

Proof: First note the following:

E[M
k

] � E
h

M

�

k

i

=

X

w: P
w

>Θ(k=m; �=m)

P

w

Pr[w 2 S

k

] :

It now suffices to show that forP
w

> Θ(k=m; �=m) we have Pr[w 2 S

k

] � 1=m. Lemma 4 can

be rephrased as

Pr
�

Θ
�

c(w)

m

;

�

m

�

< P

w

�

�

�

m

:

ForP
w

> Θ(k=m; �=m) this implies

Pr
�

Θ
�

c(w)

m

;

�

m

�

� Θ
�

k

m

;

�

m

��

�

�

m

;

and therefore

Pr
�

c(w) � k

�

�

�

m

:
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So we have Pr[w 2 S

k

] � Pr
�

c(w) � k

�

� �=m � 1=m.

Now that we have established thatM �

k

behaves much likeM
k

, we use the fact that a single

change in the sample can not have much influence on the value ofM

�

k

. The following theorem of

McDiarmid [7] states that any function of the sample for which a single change in the sample has

limited effect must converge to its expectation as the sample gets large.

Theorem 7 (McDiarmid) Let X1, : : :, X
m

be independent random variables taking values in a

set V and let f : V m

! R be such that

sup
x1;:::;xm;x

0

i

2V

jf(x1; : : : ; xm)� f(x1; : : : ; xi�1; x
0

i

; x

i+1; : : : ; xm)j � c

i

:

Then with probability at least 1� �

f(X1; : : : ;Xm

) � E[f(X1; : : : ;Xm

)] +

s

ln(1
�

)

P

m

i=1 c
2
i

2
;

and with probability at least 1� �

f(X1; : : : ;Xm

) � E[f(X1; : : : ;Xm

)]�

s

ln(1
�

)

P

m

i=1 c
2
i

2
:

A natural special case isx
i

2 [0;1] andf(x1; : : : ; xn) =
1
m

P

m

i=1xi. In this case,c
i

= 1=m and

McDiarmid’s theorem reduces to the Heoffding inequalities.

The “union bound conjunction principle” states that, for any positive numbersj andk, if

8� > 0 8

�

S Φ
�

S;

�

j

�

and

8� > 0 8

�

S Ψ
�

S;

�

k

�

then

8� > 0 8

�

S

�

Φ
�

S;

�

k + j

�

^Ψ
�

S;

�

k + j

��

:

This can be rephrased equivalently to say that if

8� > 0 8

j�

S Φ[S; �]

and

8� > 0 8

k�

S Ψ[S; �]

then

8� > 0 8

(j+k)�

S

�

Φ[S; �] ^Ψ[S; �]

�
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which clearly follows from the union bound.

Applying union bound conjunction to the two conclusions in McDiarmid’s theorem gives that,

with probability at least 1� �,

jf(X1; : : : ; Xn

)� E
�

f(X1; : : : ; Xn

�

)j �

s

ln(2
�

)

P

m

i=1 c
2
i

2
: (3)

Using Eq. (3) we can prove the following:

Lemma 8 8� > 0, forall�S,

j(G

k

�M



k

)� E
�

G

k

�M



k

�

j �

�

k + 1
m� k

+ Θ
�

k

m

;



m

��

s

2m ln
�

2
�

�

:

Proof: We apply Eq. (3) withV being the vocabulary of possible words andX

i

being theith word

in the sample. We takef(X1; : : : ;Xn

) to beG
k

�M



k

. Note that when a word is replaced in the

sample, one word increases its count while another word decreases its count. This implies that a

single replacement can changejS
k

j by at most 2. So a single replacement can changeG

k

by at

most 2(k + 1)=(m� k). A single replacement can changeM

k

by at most 2Θ(k=m; =m). So a

single change in the sample can changeG

k

�M



k

by at most

2
�

k + 1
m� k

+ Θ
�

k

m

;



m

��

:

Eq. (3) then implies the lemma.

Proof of Theorem 3: We apply union bound conjunction to lemmas 5 and 8 with�=3 inserted for

 in Lemma 8. We then get that the following holds with probability at least 1� �:

jG

k

�M

k

j =

�

�

�

G

k

�M

�=3
k

�

�

�

�

�

�

�

E[G
k

] � E
h

M

�=3
k

i

�

�

�

+

�

k + 1
m� k

+ Θ
�

k

m

;

�

3m

��

s

2m ln
�

3
�

�

� jE[G
k

] � E[M
k

]j+
�

�

�

E
h

M

�=3
k

i

� E[M
k

]
�

�

�

+

�

k + 1
m� k

+ Θ
�

k

m

;

�

3m

��

s

2m ln
�

3
�

�

�

k + 1
m� k

+

1
m

+

�

k + 1
m� k

+ Θ
�

k

m

;

�

3m

��

s

2m ln
�

3
�

�

�

k + 2
m� k

+

�

k + 1
m� k

+ Θ
�

k

m

;

�

3m

��

s

2m ln
�

3
�

�
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=

k + 2
m� k

+

s

2 ln(3
�

)

m

�

"

k + 1
1� k=m

+ k +

s

2k ln
�

3m
�

�

+ 2 ln
�

3m
�

�

#

:

This inequality is trivially true whenm = 1 and Theorem 3 follows.

4 A TIGHTER UPPER BOUND ON THE MISSING MASS

In the case of the missing massM0, it is possible to give a significantly tighter upper bound than

that given in Theorem 3, namely, the following:

Theorem 9 8� > 0 8

�

S M0 � G0 + (2
p

2+

p

3)

s

ln(3
�

)

m

:

Note that this bound only applies to one of the tails. It remains open whether a similar bound holds

on the other tail as well.

To prove this theorem, we divideM0 into a high frequency componentM+

0 and a low frequency

componentM�

0 as follows:

M

+

0 �

X

w:P
w

>1=m; c(w)=0

P

w

M

�

0 �

X

w:P
w

�1=m; c(w)=0

P

w

:

We prove the following two lemmas seperately:

Lemma 10 8� > 0 8

�

S M

+

0 � E
h

M

+

0

i

+

s

3 ln(1
�

)

m

:

Lemma 11 8� > 0 8

�

S M

�

0 � E
h

M

�

0

i

+

s

2 ln(1
�

)

m

:

Lemma 11 follows from an application of McDiarmid’s theoremand the observation that a single

change in the sample can changeM

�

0 by at most 2=m. Lemma 10 is more involved and is proved

at the end of this section. Note thatM0 = M

�

0 +M

+

0 and hence, by union bound conjunction,

Lemmas 10 and 11 together imply that

8� > 0 8

�

S M0 � E[M0] + (

p

2+

p

3)

s

ln(2
�

)

m

: (4)

We also need the following two lemmas where the first follows from Theorem 1 and the second

follows from an application of McDiarmid’s theorem toG0:
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Lemma 12 E[M0] � E[G0].

Lemma 13 8� > 0 8

�

S E[G0] � G0 +

s

2 ln(1
�

)

m

.

Theorem 9 now follows by applying union bound conjunction toEq. (4) and Lemma 13 so that the

bodies of Eq. (4), Lemma 12 and Lemma 13 all hold simultaneously.

It now remains only to prove Lemma 10. The proof is based on Chernoff’s method. The first

step is to prove the following:

Lemma 14 For � > 0 and � > 0 we have

Pr
h

M

+

0 � E
h

M

+

0

i

+ �

i

� e

F (�)���

where

F (�) �

X

w: P
w

>1=m

�

ln(Q
w

e

�P

w

+ (1�Q

w

))� �P

w

Q

w

�

and Q
w

= (1� P

w

)

m is the probability that word w does not occur in the sample.

Proof: In Chernoff’s method, we bound the tail probability using Markov’s inequality:

Pr
h

M

+

0 � E
h

M

+

0

i

+ �

i

= Pr
h

exp
�

�(M

+

0 � E
h

M

+

0

i

� �)

�

� 1
i

� E
h

exp
�

�(M

+

0 � E
h

M

+

0

i

� �)

�i

= e

��(E
�

M

+

0

�

+�) E
h

e

�M

+

0

i

: (5)

LetB = fw 2 V : P
w

> 1=mg. For each wordw 2 B, we introduce a random variableX
w

which

is 1 if w doesnot occur in the sample and 0 otherwise. We can then writeM

+

0 as

M

+

0 =

X

w2B

X

w

P

w

:

Clearly, E[X
w

] = Q

w

so

E
h

M

+

0

i

=

X

w2B

Q

w

P

w

: (6)

Now

e

�M

+

0
= exp

 

�

X

w2B

P

w

X

w

!

=

Y

w2B

e

�P

w

X

w

=

Y

w2B

�

1+

�

e

�P

w

� 1
�

X

w

�

(7)
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where the last equality uses the fact thatX

w

2 f0;1g. Multiplying out the product, we can write

Eq. (7) as a polynomial:

Y

w2B

�

1+

�

e

�P

w

� 1
�

X

w

�

=

X

A�B

c

A

Y

w2A

X

w

(8)

for some coefficientsc
A

. Furthermore, because�P
w

� 0, all of the coefficientsc
A

are nonnegative.

Note that
Q

w2A

X

w

is 1 if none of the wordsw in A occur in the sampleS and is 0 otherwise.

Thus,

E

"

Y

w2A

X

w

#

=

 

1�
X

w2A

P

w

!

m

�

 

Y

w2A

(1� P

w

)

!

m

=

Y

w2A

Q

w

: (9)

The inequality here can be proved by induction onjAj using the fact that 1�p�q � (1�p)(1�q)

for p; q � 0. Thus, combining Eqs. (7), (8) and (9) gives

E
h

e

�M

+

0

i

=

X

A�B

c

A

E

" 

Y

w2A

X

w

!#

�

X

A�B

c

A

Y

w2A

Q

w

=

Y

w2B

�

1+

�

e

�P

w

� 1
�

Q

w

�

:

Combined with Eqs. (5) and (6) this gives

Pr
h

M

+

0 � E
h

M

+

0

i

+ �

i

� exp

 

���� �

X

w2B

P

w

Q

w

!

�

Y

w2B

�

1+

�

e

�P

w

� 1
�

Q

w

�

= e

F (�)���

:

Next we prove the following bound on the functionF (�):

Lemma 15 For � � m=2

F (�) �

�

2

(e� 1)m
:

12



Proof: First, note thatF (0) = 0. Now letF 0(�) denote the first derivative ofF , i.e., dF=d�

evaluated at�. Then

F

0

(�) =

X

w: P
w

>1=m

Q

w

P

w

(1�Q

w

)e

��P

w

+Q

w

�Q

w

P

w

Note thatF 0(0) = 0. Now lettingF 00(�) denote the second derivative ofF we get that

F

00

(�) =

X

w: P
w

>1=m

Q

w

P

2
w

(1�Q

w

)e

��P

w

�

(1�Q

w

)e

��P

w

+Q

w

�2

�

X

w: P
w

>1=m

Q

w

P

2
w

(1�Q

w

)e

��P

w

�

(1�Q

w

)e

��P

w

�2

=

X

w: P
w

>1=m

Q

w

P

2
w

(1�Q

w

)e

��P

w

=

X

w: P
w

>1=m

P

w

Q

w

P

w

e

�P

w

(1�Q

w

)

�

X

w: P
w

>1=m

P

w

P

w

e

(��m)P

w

(1�Q

w

)

�

X

w: P
w

>1=m

P

w

P

w

e

(��m)P

w

(1� 1=e)

where the last two inequalities use the inequalityQ

w

= (1�P

w

)

m

� e

�mP

w which is at most 1=e

for P
w

� 1=m. For� > 0 andx � 0 one can show, by maximizing overx, that

xe

��x

�

1
�e

:

For� < m, we can use this inequality with� = (m� �) and get that

F

00

(�) �

X

w: P
w

>1=m

P

w

1
(e� 1)(m� �)

�

1
(e� 1)(m� �)

:

Since� � m=2 we then have that

F

00

(�) �

2
(e� 1)m

:

The lemma now follows fromF (0) = 0,F 0(0) = 0 andF 00(�) � 2=(e� 1)m.

Proof of Lemma 10: Let � = m�=2. Lemmas 14 and 15 together imply that

Pr
h

M

+

0 � E
h

M

+

0

i

+ �

i

� exp

 

�

2

(e� 1)m
� ��

!

= exp

 

m�

2

4(e� 1)
�

m�

2

2

!

� e

�m�

2
=3
:

13



Lemma 10 now follows by setting this probability equal to� and solving for�. This completes the

proof of Theorem 9.
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