
International Conference on Accoustics, Speech and Signal Processing, 2002.

COMBINING PRIOR KNOWLEDGE AND BOOSTING FOR CALL CLASSIFICATION IN
SPOKEN LANGUAGE DIALOGUE

M. Rochery, R. Schapire, M. Rahim, N. Gupta, G. Riccardi, S. Bangalore, H. Alshawi, S. Douglas

AT&T Labs - Research, 180 Park Avenue, Florham Park, NJ 07932

ABSTRACT

Data collection and annotation are major bottlenecks in rapid
development of accurate syntactic and semantic models for
natural-language dialogue systems. In this paper we show
how human knowledge can be used when designing a lan-
guage understanding system in a manner that would allevi-
ate the dependence on large sets of data. In particular, we
extend BoosTexter, a member of the boosting family of al-
gorithms, to combine and balance hand-crafted rules with
the statistics of available data. Experiments on two voice-
enabled applications for customer care and help desk are
presented.

1. INTRODUCTION

Building spoken natural-language dialogue systems for au-
tomated customer care and help desk applications presents
several technical challenges: (1) the need for large vocab-
ulary recognition to accommodate for the variety of input
requests, (2) parsing and understanding users’ requests, and
(3) supporting mixed-initiative and conversational dialogue.
The spontaneous input for these sets of applications is sig-
nificantly more complex than travel reservation systems [4]
for example, and presents a major challenge to both speech
recognition and language understanding.

Rapid prototyping of natural-language dialogue appli-
cations is highly influenced by the availability of data for
training recognition and understanding models. In this pa-
per we consider the scenario when data is either limited or
unavailable for building one component of our understand-
ing system, namely the module for identifying a user’s re-
quest. We consider the task of detecting a user’s request
as a multi-label classification problem and apply BoosT-
exter, a member of the boosting family of algorithms that
was first proposed by Freund and Schapire [2, 6]. BoosT-
exter is strictly data driven. It combines many simple and
moderately accurate categorization rules that are trainedse-
quentially into a single, highly accurate model that can ac-
curately predict a class. It has been shown to outperform
traditional methods for text categorization [7].

There are two principles we have examined: (1) Learn-
ing from existing data to generate new corpus that is rele-
vant to a different task; (2) Balancing human expertise rang-
ing from pragmatic knowledge to application specific rules
with the statistics of the training data. Both strategies aim
at rapidly prototyping spoken dialogue services when the

amount of data available is severely limited, and can po-
tentially support new service requests for which no data is
available.

There are several possible schemes for learning from ex-
isting data to expand the training corpus. One approach
is to use a Synonym dictionary look-up. Phrases such as
“I’d like to” and “I want to”, for example, would be consid-
ered as synonyms that can be interchanged in order to ex-
pand the size of the training corpus [1]. Another approach
which is more syntactic-based is to define a similarity mea-
sure across phrases, interchanging them if they belong to the
same cluster. Clusters are computed by encoding phrases
using context-dependent feature vectors and applying a Ma-
halanobis distortion measure to compute their distance apart
[5]. A third approach for expanding the training set is to turn
an existing phrase grammar into a finite-state generator [5].
Unsupervised learning can then be applied for training the
classier as it is commonly done in automatic speech recog-
nition.

A more direct approach for bootstrapping and building
robust and accurate text classifiers is by combining appli-
cation knowledge with available training data. In this pa-
per, we extend BoosTexter to combine and balance prag-
matic knowledge of the application with the statistics of the
training data. The objective is to encode rough application
knowledge and human judgment by a set of hand-crafted
rules, and to refine, reinforce and adjust these rules by the
statistics of available training data.

We present two sets of experiments using BoosTexter,
one for a customer care application and the other for a Help
Desk application. Our results show that including expert
knowledge when data is limited can help us reduce the amount
of data necessary for building these applications by factors
of 2 to 4. We further show that even in the presence of no
data, the same paradigm can be applied to improve classifi-
cation performance in the event that new classes are being
added to the system.

2. BOOSTEXTER

We assume that we are given a set of training examples
(x

1

; y

1

); : : : ; (x

m

; y

m

). Eachx
i

is called aninstance. In
this paper, eachx

i

will generally be the text of a transcribed
or recognized utterance; however, in general,x

i

may incor-
porate other information about what was spoken. Eachy

i

is
thelabelor classassigned to the instancex

i

; for instance,y
i

may indicate call type. For simplicity, we assume for now
that there are only two classes,�1 and+1.

The goal of a learning algorithm is to use the training
data to derive a rule that accurately predicts the class of any
new instancex; such a prediction rule is called aclassifier.
The approach that we take is based on a machine-learning
method calledboosting[2, 6]. In particular, we use a variant
of Schapire and Singer’s BoosTexter system [8].

The basic idea of boosting is to build a highly accurate
classifier by combining many “weak” or “simple”base clas-
sifiers, each one of which may only be moderately accurate.
To obtain these base classifiers, we assume we have access
to abase learning algorithmthat we use as a black-box sub-
routine.

The collection of base classifiers is constructed in rounds.
On each roundt, the base learner is used to generate a base
classifierh

t

. Besides supplying the base learner with train-
ing data, the boosting algorithm also provides a set of non-
negative weightsw

t

over the training examples. Intuitively,
the weights encode how important it is thath

t

correctly clas-
sify each training example. Generally, the examples that
were most often misclassified by the preceding base classi-
fiers will be given the most weight so as to force the base
learner to focus on the “hardest” examples.

Following Schapire and Singer [7], we useconfidence-
ratedclassifiersh that, rather than outputting simply�1 or
+1, output a real numberh(x) whose sign (�1 or +1) is
interpreted as a prediction, and whose magnitudejh(x)j is
a measure of “confidence.”

The real-valued predictions of the final classifierf can
be converted into probabilities by passing them through a
logistic function; that is, we can regard the quantity(1 +

e

�f(x)

)

�1 as an estimate of the probability thatx belongs
to class+1. In fact, the boosting procedure here described
is designed to minimize the negative conditional log likeli-
hood of the data under this model, namely,

X

i

ln(1 + e

�y

i

f(x

i

)

): (1)

The extension of BoosTexter to the multiclass problem
is described in [7, 8].

2.1. Incorporating human knowledge

Boosting, like many machine-learning methods, is entirely
data-driven in the sense that the classifier it generates is de-
rived exclusively from the evidence present in the training
data itself. When data is abundant, this approach makes
sense. However, in some applications, data may be severely
limited, but there may be human knowledge that, in princi-
ple, might compensate for the lack of data.

In its standard form, boosting does not allow for the di-
rect incorporation of such prior knowledge. In this section,
we describe a modification of boosting that combines and
balances human expertise with available training data. We
aim for an approach that allows the rough human judgments

to be refined, reinforced and adjusted by the statistics of the
training data in a well controlled manner.

As before, we limit our attention to binary classifica-
tion; extension to multiclass problems can be made along
the lines of Schapire and Singer [7, 8]. In our approach, a
human expert must begin by constructing a rulep mapping
each instancex to an estimated probabilityp(x) 2 [0; 1]

which is interpreted as the guessed probability that instance
x belongs to class+1. We discuss below some methods for
constructing such a functionp.

To apply boosting usingp and a training set, we create
a newweightedtraining set. This new set includes all of the
original training examples(x

i

; y

i

), each with unit weight.
In addition, for each training example(x

i

; y

i

), we create
two new training examples(x

i

;+1) and(x
i

;�1)with weights
�p(x

i

) and�(1 � p(x

i

)), respectively, where� is a param-
eter of the algorithm controlling the confidence in encoding
knowledge. During training, these weightsw

0

are used in
computingw

t

so that

w

t

(i) =

w

0

(i)

1 + exp

�

y

i

P

t�1

t

0

=0

h

t

0

(x

i

)

�

(here,i ranges over all of the examples in thenewtraining
set).

One final modification that we make is to add a0-th base
classifierh

0

that is based onp so as to incorporatep right
from the start. In particular, we take

h

0

(x) = ln

�

p(x)

1� p(x)

�

and includeh
0

in computing the final classifierf .
Essentially, these modifications have the effect of chang-

ing the objective function in (1) to one that incorporates
prior knowledge, namely,

X

i

ln

�

1 + e

�y

i

f(x

i

)

�

+�

X

i

RE

�

p(x

i

) k

1

1 + e

�f(x

i

)

�

whereRE(p k q) = p ln(p=q) + (1� p) ln((1� p)=(1�

q)) is binary relative entropy. Thus, we balance the con-
ditional likelihood of the data against the distance of the
data-generated model from the model provided by the hu-
man. The relative importance of the two terms is controlled
by the parameter�.

3. PRIOR KNOWLEDGE

Prior knowledge may be acquired from several sources, e.g.
human judgment, application guidelines and manuals, world
knowledge, and in-domain website. In fact while devel-
oping a spoken dialogue system designers do have access
to one or more such sources of knowledge. Designers use
these sources of knowledge to deduce information crucial
for the development of the dialogue system, i.e. the func-
tionalities to support, and a basic understanding of how users

may interact with the application. It would be only prudent,
therefore, to also use these sources of knowledge for boot-
strapping the text categorization module needed for the nat-
ural language understanding, especially when data is lim-
ited.

As an example, prior knowledge allows us to encode
rules that can classify user responses to confirmation ques-
tions like: “So you want to fly from Boston to New York
on Sunday evening?” A user response containing “yes”,
“okay”, “correct”, “all right”, or “fine”, etc. is highly in-
dicative of a positive confirmation. We can formally express
this by a rule with an estimated probability, of say 0.9:

� yesjokayjcorrectjall rightjfine! class(Yes, .9).

Another example of applying prior knowledge is for classi-
fying users requests to be connected to an operator/service
agent. This can be expressed by the following rule:

� speak & (humanjoperatorj(service & agent))
! class(Agent, .95).

In general, we encode knowledge using rules with three log-
ical operators, OR, AND and NOT. Rules are mapped onto
a set of BoosTexter 0-th base classifiersh

0

. Each of these
classifiers is assigned ap(x) value which is interpreted as
our confidence that a given rule belongs to class +1. The
values ofp(x) are then used to computeh

0

(x) as explained
in section 2.1.

4. EXPERIMENTS

In this section, we describe and analyze the experiments we
performed using BoosTexter for text categorization with in-
domain knowledge provided by the application guidelines.

We ran experiments with data from two different appli-
cations. The first database used is theHow May I Help
You?sm database [3]. In this task, there are 15 different
classes. We did experiments with 50 to 1600 sentences in
the training set and 2991 sentences in the test set. The sec-
ond database is for an application called “TTS Help Desk”.
This application provides information about AT&T Text-to-
Speech engine. There are 22 different classes. We trained
models on 100 to 2675 sentences and tested on 2000 sen-
tences.

In the first experiment that was performed on theHow
May I Help You?sm database, we measured the classifica-
tion accuracy as a function of the number of examples used
during training. The classification accuracy is the percent-
age of sentences with a correctly predicted label. There is
no rejection and the label with the highest score is kept as
the predicted label. We compared models built only with
some training examples and models built with both hand-
crafted rules (prior knowledge) and training examples. We
used approximately one rule per class where a rule is a com-
bination of many words or phrases. We trained the models
on 50, 100, 200, 300 rounds when the number of available
training examples was respectively 50, 100, 200, 400 and
up. The parameter� was selected empirically based on the

0 200 400 600 800 1000 1200 1400 1600
74

76

78

80

82

84

86

88

90

92

Training Sentences

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

data

knowledge

knowledge + data

Figure 1: Comparison of performance using data and
knowledge separately or together on the How May I Help
You task.

number of available training examples. We set� to 1 when
the number of training examples was less than or equal to
200, 0.1 when it was between 400 and 800, and 0.01 when
it was greater.

The dashed line in Figure 1 shows the classification ac-
curacy for models built on hand-crafted rules and training
examples whereas the solid lines show the classification ac-
curacy for models built either on training examples only or
on hand-crafted rules only. An improvement in accuracy is
observed when using hand-crafted rules and training exam-
ples together. This comes from the fact that some patterns of
the hand-crafted rules are not in the data at all or are not in
a sufficient number of sentences to have a statistical impact
when training only on the data.

In this experiment, when fewer training examples were
available (<100 examples) exploiting human expertise pro-
vided classification accuracy levels that are equivalent to
models trained on four times the amount of training data.
When the number of training examples is larger (> 100),
accuracy levels becomes equivalent to two times the amount
of training data. When larger than 6000 sentences were
available, both models were found to converge to similar
classification accuracy.

The second experiment was performed on the Help Desk
task. Figure 2 shows the comparison between models built
with hand-crafted rules and training examples and models
built only with training examples. In this experiment there
is also about 1 rule per class where a rule is again a combina-
tion of many words and phrases. We trained the models on
100, 200, 400, 600, 800, 1000 when the number of training
examples was respectively 100, 200, 400, 800, 1600, and
up. We set� to 0.1 when the number of training examples
was less than or equal to 1600 and to 0.01 otherwise.

Figure 2 shows an improvement in classification accu-
racy when hand-crafted rules are being used. This improve-
ment is up to 9% absolute with 100 training examples and

0 500 1000 1500 2000 2500 3000
45

50

55

60

65

70

75

80

85

90

Training Examples

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

data

knowledge

knowledge + data

Figure 2: Comparison of performance using data and
knowledge separately or together on the Help Desk task.

drops to 0.5% when more data becomes available.
We can notice from the experiments that the number of

rounds and the choice of the parameter� are dependent on
the number of training examples available. We can also no-
tice that the knowledge-only curves are not perfectly flat.
This comes from the fact that the models from the knowl-
edge take into account the class distribution of the available
training examples.

A further experiment was performed to evaluate the ac-
curacy of our classifier when new semantic classes are be-
ing added following system training. This is the situation
when new functionalities are needed following system de-
ployment but with no data available. Figure 3 shows the
classification accuracy when four additional semantic classes
are added to theHow May I Help You?sm model after be-
ing trained on 11 classes. Although the system performance
drops in general, the results demonstrate that incorporating
human judgment helps to provide an initial boost in perfor-
mance even when no data is present.

5. SUMMARY

The use of BoosTexter for text categorization in natural-
language understanding was described in this paper. We
presented an extension to BoosTexter that incorporates hu-
man knowledge of the application in the form of hand-crafted
rules. Each set of rules, associated with estimated proba-
bilities of the distribution of the class, is refined and en-
hanced by the statistics of the training data. A new objec-
tive function was proposed which has an additional relative
entropy term that balances the conditional likelihood of the
data against the distance of the data-generated model from
that obtained using human knowledge.

Two experiments were conducted on speech data col-
lected from natural-language dialogue applications. Both
experiments demonstrate that introducing prior knowledge
of the domain can significantly cut the amount of data needed

200 1200 1600
85

86

87

88

89

90

91

92

93

Training Examples

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

data

knowledge + data

Figure 3: Adding new semantic classes following model
training.

for building the application. For both applications, exploit-
ing human expertise helped to reduce reliance on the data by
factors of two to four. A further investigation showed that
the proposed paradigm using human judgment helps to im-
prove classification performance when new functionalities
are needed during service evolution.

References
[1] Hiyan Alshawi and Shona Douglas. Variant transduction:A

method for rapid development of interactive spoken interfaces.
In Proc. SIGDial Workshop on Discourse and dialogue, 2001.

[2] Yoav Freund and Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an application to boost-
ing. Journal of Computer and System Sciences, 55(1):119–
139, August 1997.

[3] A.L. Gorin, G. Riccardi, and J.H. Wright. How May I Help
You? Speech Communication, 23:113–127, 1997.

[4] E. Levin, , S. Narayanan, R. Pieraccini, K. Biatov, E. Boc-
chieri, G. Fabbrizio, W. Eckert, S. Lee, A. Pokrovsky,
M. Rahim, P. Ruscitti, and M. Walker. The AT&T darpa com-
municator mixed-initiative spoken dialogue system. InICSLP,
2000.

[5] G. Riccardi and S. Bangalore. Automatic acquisision of
phrase grammars for stochastic language modeling. InACL
Workshop on Very Large Corpora Proc., pages 188–196,
1998.

[6] Robert E. Schapire. A brief introduction to boosting. InPro-
ceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, 1999.

[7] Robert E. Schapire and Yoram Singer. Improved boosting al-
gorithms using confidence-rated predictions.Machine Learn-
ing, 37(3):297–336, December 1999.

[8] Robert E. Schapire and Yoram Singer. BoosTexter: A
boosting-based system for text categorization.Machine
Learning, 39(2/3), May/June 2000.

