
In Gerhard Lakemeyer and Bernhard Nebel, editors,
Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, 2002.

Learning Theory and Language Modeling

David McAllester Robert E. Schapire

AT&T Labs � Research

Shannon Laboratory

180 Park Avenue

Florham Park, NJ 07932

fdmac, schapireg@research.att.com

Abstract

We consider some of our recent work on Good-Turing estimators in the larger

context of learning theory and language modeling. The Good-Turing estimators

have played a signi�cant role in natural language modeling for the past twenty

years. We have recently shown that these particular leave-one-out estimators

converge rapidly. We present these results and consider possible consequences

for language modeling in general. In particular, other leave-one-out estimators,

such as for the cross entropy of various forms of language models, might also

be shown to be rapidly converging using proof methods similar to those used

for the Good-Turing estimators. This could have broad rami�cation in the

analysis and development of language modeling methods. We suggest that, in

language modeling at least, leave-one-out estimation may be more signi�cant

than Occam's razor.

1 INTRODUCTION

How people manage to acquire language in the �rst few years of life is one of the great

mysteries of human cognition. Computers cannot, at present, duplicate this ability. There

has been considerable recent work in learning theory and one would certainly expect a

mathematical theory of learning to be relevant in the study of language learning. In this

paper we present some of our recent theoretical work motivated by the desire to better

understand language learning. We take a statistical view of language and our results are

fundamentally statistical in nature. Ultimately we expect that a proper understanding

of language learning will encompass syntax and semantics. However, it seems possible

that language is statistical, at least to some extent, at all levels | sentences can be

grammatically ambiguous with some interpretations being more likely than others and

statements can have uncertain truth values with some more likely to be true than others.

It is hoped that the statistical results developed here, although not explicitly about syntax

and semantics, will continue to prove their worth as our understanding of language learning

evolves.

We are interested in what computational linguists call \language models," attempts to

capture regularities in language by statistically modeling the probabilistic distribution of

words, phrases and sentences as they occur in actual use. The �rst section of this paper

consists of a formal de�nition of the notion of a language model in general and motivates

a widely used formal measure of the \amount of regularity" uncovered by a given model.

The second section describes what is seemingly a very weak class of models | n-gram

models. These are essentially simple Markov models of the language that do not capture

any notions of grammar, meaning, etc. In spite of the intuitive weakness of these models,

they have proved very e�ective in supporting speech recognition | more e�ective than

models that intuitively seem more sophisticated.

The third section considers n-gram models from the point of view of learning theory.

Although we believe that ultimately n-gram models will be replaced in most applications

by more sophisticated forms of language models, the fundamental learning theory issues

that arise in n-gram models seem likely to arise in more sophisticated models as well.

A fundamental issue is the relation between n-gram models and the notion of Occam's

razor as a foundation for learning theory. Informally, Occam's razor (Blumer, Ehrenfeucht,

Haussler, and Warmuth 1987) states that, for learning to occur, i.e., for our model to give

accurate predictions on data not seen during training, the model must be substantially

\simpler" or \more compact" than the data itself. However, in general, n-gram models

are not small | the model essentially memorizes the training data. So most standard

theorems of learning theory that are based on Occam's razor become irrelevant; they do

not provide meaningful performance guarantees for n-gram models even in the limit of

in�nite training data.

The fourth section introduces the Good-Turing leave-one-out estimators and discusses

their relation to n-gram language models. The fundamental Good-Turing estimator is

simply an estimate of the probability of seeing a word that has not been seen during

training (or a word that has not been seen in a particular context). In other words, given

a sample of English, Good-Turing estimators tell us how to estimate the probability of

seeing a new English word in a new sample. Good-Turing estimators are relevant to n-

gram models because they are used in setting certain key parameters called interpolation

coe�cients in the n-grammodels. Empirically, setting these parameters according to Good-

Turing performs better in practice than other methods such as those inspired by so-called

Bayesian methods. In this section we present very recent theorems on the accuracy of the

Good-Turing estimators.

A �nal section discusses leave-one-out error estimators in general. The leave-one-out error

is computed by evaluating the expected error on a single randomly chosen training example

based on an estimate obtained using the remaining training examples. It seems likely to

us that the proof methods developed for the Good-Turing estimators can be used to prove

rapid convergence of other leave-one-out estimators for n-gram language models. This

suggests a learning procedure in which one chooses the model whose generalization error,

as measured by its leave-one-out estimate, is smallest. This approach seems fundamentally

di�erent from the more standard approach of minimizing training error over a large family

of models.

2 LANGUAGE MODELS IN GENERAL

We would like a computer to read a large corpus of text, perhaps several years of issues

of The New York Times, and �nd regularities in the text. For example, one might hope

to discover that sentences tend to contain a noun phrase followed by a verb phrase. In

this section we describe a widely used mathematical notion of what it means to \�nd

regularities".

Language can have various kinds of regularities. For example, one might �nd that, in

The New York Times at least, grammatical sentences are much more common than

ungrammatical ones. One might �nd that, among the grammatical sentences with objective

truth values, true sentences are more common than false sentences | The New York Times

is, to some extent, trustworthy. No unsupervised language learning computer can currently

�nd these syntactic and semantic regularities, although presumably these regularities do

exist in the training corpus. Computers can currently �nd more obvious regularities such

as the statement that the word of tends to be followed by the word the or that the word

habit is much more likely if the preceding word is bad. Hopefully computers will some day

be able to �nd deeper regularities either by using better learning methods or by seeding

the search with su�cient initial regularities.

In spite of the current weakness of computers in �nding regularities, it is possible to

de�ne a quantitative measure of the amount of regularity that has been found. We can

then at least measure the progress of our learning systems. A common measure of the

amount of regularity is based on data compression | any real regularity can, in principle,

be exploited in compressing English text. For instance, simply knowing the frequency

of each word allows us, using standard methods from information theory (Cover and

Thomas 1991) to compress the text to a fraction of its original size (where that fraction

turns out to be the entropy of the distribution of words). At the opposite extreme of

sophistication, if objectively true statements are much more common in The New York

Times than objectively false statements then one could, in principle, exploit this fact for

compression | if we represent each sentence by a bit string then we can use smaller bit

strings for the true sentences than for the false sentences. Of course there is at present

no computationally tractable method of modeling truth in a computer. Nonetheless, any

regularity can in principle be exploited in compression.

Given a compression scheme one can de�ne the quantity of regularity implicit in that

scheme to be the amount of compression achieved by the scheme. Consider a coding scheme

c that compresses a sentence s into a bit string code word c(s). For a given probability

distribution P on sentences, the average number of bits per sentence using coding scheme

c, denoted H(P jjc), can be de�ned as follows where jc(s)j denotes the number of bits in

the code word for s:

H(P jjc) =

X

s

P (s)jc(s)j: (1)

Our objective is, essentially, to �nd a compression scheme c with a small quantity H(P jjc)

of bits per sentence. (Actually, since sentence length varies from author to author, a more

stable measure of regularity is H(P jjc)=n where n is the average number of words per

sentence. This is the number of bits per word in the compressed text.)

It turns out that any coding scheme for sentences corresponds to a probability distribution

on sentences. We are interested in coding schemes that allow us to transmit a sequence of

sentences as a sequence of code words. It is important to know where one code word ends

and the next begins. This can be done if we assume that no code word is a proper pre�x

of any other | such a code is called pre�x-free. For a pre�x-free code we can interpret

2

�jc(s)j

as a probability of the sentence s | it is the probability that if we generate an

in�nite random bit string and then decode one sentence from the front of this string we

get sentence s.

Conversely, information theory gives a way of converting any probability distribution over

sentences into a coding scheme. Let

^

P be a model (such as a probabilistic grammar or

an n-gram model) that de�nes a probability distribution over sentences where

^

P (s) is the

probability of sentence s under the model

^

P . If we use block codes | code words for large

blocks of sentences rather than code words for individual sentences | then in the limit

of large block size the average number of bits used to code sentence s in the code de�ned

by

^

P is exactly log

2

(1=

^

P (s)). So if the true probability of a sentence s is P (s), then the

average number of bits used to transmit a sentence under the code de�ned by

^

P is given

by

H(P jj

^

P) =

X

s

P (s) log

1

^

P (s)

: (2)

Now suppose that

^

P (s) is actually de�ned by a coding scheme c, i.e., we have that

^

P (s) is

de�ned to be 2

�jc(s)j

. In that case we have that log(1=

^

P (s)) equals jc(s)j and so equations

(1) and (2) agree. In general, coding schemes correspond to probability distributions and

probability distributions correspond to (block) coding schemes. The quantity H(P jj

^

P) is

sometimes called the cross-entropy of P with respect to model (or coding scheme)

^

P .

If P is the true probability distribution over words then one can show that P is its own best

model, i.e., the compression scheme implicit in the distribution P achieves the greatest

possible compression. More formally, we have the following for any model

^

P :

H(P jjP) � H(P jj

^

P):

The quantity H(P jjP) is usually written as H(P) and is the entropy of the distribution

P . A widely used quantity is the Kullback-Leibler divergence, written D(P jj

^

P), which is

de�ned as follows:

D(P jj

^

P) � H(P jj

^

P)�H(P jjP) =

X

s

P (s) log

P (s)

^

P (s)

:

We can then write H(P jj

^

P) as

H(P jj

^

P) = H(P) +D(P jj

^

P):

In practice, however, the true entropyH(P) of English is unknown and the only measurable

quantity is H(P jj

^

P) for particular models

^

P . Each model then provides an upper bound

on the true entropy of English.

We are interested in �nding a probability model (coding scheme) that minimizes the

average compressed length of sentences. Again, the average number of bits per word,

H(P jj

^

P)=n, tends to be a more stable measure of the amount of identi�ed regularity

(it is not sensitive to variations in the average sentence length). Most authors state the

performance of language models by giving the perplexity which is de�ned to be 2

H(P jj

^

P)=n

.

Here, however, we will use the cross entropy per word H(P jj

^

P)=n rather than perplexity.

It has been shown that n-gram models of business news text achieve a cross-entropy of

about 6:5 compressed bits per word as calculated by (2) (Chen and Goodman 1998).

Models based on longer distance syntactic regularities currently only reduce this by a

small fraction of a bit per word (Chelba and Jelinek 1998). But it seems plausible that

signi�cantly greater reductions are possible.

3 n-GRAM MODELS

Among the simplest and most widely used language models are the n-gram models.

Essentially, these models attempt to estimate the distribution of n-grams, i.e., tuples of

length n. This is roughly the same as estimating the distribution of words that will follow

a sequence of n�1 words. For instance, such a model might capture the fact that the word

following the phrase \black and" is likely to be \white." Although n-gram models do not

capture long distance syntactic or semantic regularities, they have proved very useful in

speech recognition systems.

One of the remarkable characteristics of n-gram models is that they include parameters

estimating conditional probabilities of the form

^

P (�j) where the conjunction � ^	 has

only occurred a single time in the training data. For instance, in the example above, �^	

is the event that the entire phrase \black and white" occurs. In a large corpus, such a

phrase may occur repeatedly, but there are bound to be many others that occur only once.

We will call a model parameter derived from a single training sample a one-count

parameter. By the nature of language, the number of one-count parameters in an n-gram

language model is likely to be close to the number of samples in the training data |

the n-gram model essentially memorizes the training data. It is well known that the one-

count parameters of an n-gram model signi�cantly improve the model | the one-count

parameters signi�cantly reduce cross entropy of the model. More sophisticated language

models, such as stochastic grammars used in open-domain parsing (Collins 1997; Charniak

2000), also involve a number of one-count parameters essentially equal to the size of the

training data. The fundamental theoretical challenge is to explain why such \one-count

models" do not over�t as is typical of overly complex models.

Bayesian explanations for the performance of one-count models can be given with an

appropriate choice of the Bayesian model prior (Pereira and Singer 1999). The large one-

count model is viewed as a posterior mixture of much smaller models. However, the validity

of the Bayesian assumptions are questionable. Furthermore, the performance of Bayesian-

inspired smoothing is inferior to the performance of Good-Turing inspired smoothing

(smoothing is described below). Here we are interested in non-Bayesian explanations that

account for the performance of Good-Turing inspired smoothing. The n-gram models

provide a simple theoretical setting to explore this issue.

To simplify the discussion (and to allow provable bounds) we assume a �nite �xed

vocabulary of words. In speech recognition applications one might simply restrict the

vocabulary to the �nite set of words known to the speech recognition system | other

words must be spelled out by the speaker.

An n-gram over vocabulary V is a tuple of n words. Intuitively, one can consider a

probability distribution over n-grams de�ned by sampling a sequence of n words from

a random position in a randomly selected sample of English text and replacing words not

in V by an \unknown" token. Let S be a sample of m n-grams hw

1

1

� � �w

1

n

i, hw

2

1

� � �w

2

n

i, : : :,

hw

m

1

� � �w

m

n

i. In practice these n-grams would be adjacent so that w

i

j

= w

i+1

j�1

. However,

considering independently sampled n-grams simpli�es the theoretical analysis. For a given

distribution on n-grams we can think of w

1

, : : :, w

n

as dependent random variables. We

are interested in estimating P (w

n

jw

1

; : : : ; w

n�1

). For a given sample S of m n-grams

and 1 � j � k � n we de�ne C(hw

j

� � � w

k

i) to be the number of n-grams hw

i

1

� � �w

i

n

i in

the sample such that w

i

h

= w

h

for j � h � k. For instance, C(hw

n�1

i) is the number of

n-grams whose second to last word is w

n�1

, and C(hw

n�1

w

n

i) is the number of n-grams

ending with the pair w

n

� 1; w

n

; thus, the ratio C(hw

n�1

w

n

i)=C(hw

n�1

i) is the empirical

probability of w

n

following w

n�1

.

It may be very di�cult to estimate the distribution of words following a phrase if that

phrase was only seen a small number of times during training. To handle this very common

case, an n-gram model is typically \mixed" or \smoothed" or \interpolated" with an

(n�1)-gram model, and (n�2)-gram model, etc. More speci�cally, for 0 � k � n we de�ne

the interpolated k-gram model

^

P (w

n

jw

n�k

: : : w

m�1

) derived from the sample as follows

where �(hw

n�k

: : : w

n�1

i) is a real number in [0; 1] called the interpolation coe�cient for

the context hw

n�k

: : : w

n�1

i:

^

P (w

n

) � �(hi)

C(hw

n

i)

m

+ (1� �(hi))

1

jV j

^

P (w

n

jw

n�1

) � �(hw

n�1

i)

C(hw

n�1

; w

n

i)

C(hw

n�1

i)

+(1� �(hw

n�1

i))

^

P (w

n

)

.

.

.

^

P (w

n

jw

n�k

: : : w

m�1

) � �(hw

n�k

: : : w

n�1

i)

C(hw

n�k

: : : w

n�1

; w

n

i)

C(hw

n�k

: : : w

n�1

i)

+(1� �(hw

n�k

: : : w

n�1

i))

^

P (w

n

jw

n�k+1

� � �w

n�1

):

The models

^

P (w

n

),

^

P (w

n

jw

n�1

) and

^

P (w

n

jw

n�2

; w

n�1

) are called the interpolated un-

igram, bigram and trigram models, respectively. The interpolated trigram model inter-

polates between trigram count ratios and the interpolated bigram model which, in turn,

interpolates between the bigram count ratios and the interpolated unigram model which,

in turn, interpolates between the empirical word frequencies and the uniform distribution.

At all levels a separate interpolation coe�cient is used for each conditioning context | the

trigram model has a separate interpolation coe�cient for each bigram context which, in

turn, has a separate interpolation coe�cient for each unigram context which, in turn, has

a single interpolation coe�cient for its single empty context. If C(hw

n�k

: : : w

n�1

i) = 0

then we require that �(hw

n�k

: : : w

n�1

i) = 0 so that we avoid division by zero in the

count ratios. Interpolation is one form of \smoothing" where smoothing can be inter-

preted loosely as any method of mixing information from various empirical conditional

probabilities (Chen and Goodman 1998).

Note that the empirical count ratios will typically assign zero probability to many words

that in fact have nonzero probabilities. If a model assigns zero probability to an event

which actually has nonzero probability then the cross entropy of that model is in�nite.

However, assuming all interpolation coe�cients are less than 1, each interpolated k-gram

model assigns nonzero probability to all words for all contexts.

Intuitively, if a context has occurred a large number of times then the count ratio should

be somewhat reliable. Unfortunately, the count of the context turns out to be a poor

predictor of the appropriate interpolation weight. A better analysis of the appropriate

interpolation weight can be given in terms of leave-one-out estimators.

4 THE GOOD-TURING LEAVE-ONE-OUT

ESTIMATORS

We will argue in Section 6 that the setting of the interpolation parameters in an

interpolated n-gram model should be theoretically analyzed in terms of leave-one-out

estimates of the cross-entropy of the model as a whole. Unfortunately, the theoretical

analysis of leave-one-out estimators is mathematically challenging. In this section we

present a theoretical analysis of the Good-Turing leave-one-out estimators. The study

of these estimators can be motivated in two ways. First, these estimators have played an

important role in practical methods for setting interpolation coe�cients in interpolated n-

gram models. Second, they provide a case study in the analysis of leave-one-out estimation,

a kind of warm-up exercise for the more challenging study of leave-one-out cross-entropy

estimation for complete interpolated n-gram models.

Consider the problem of setting the interpolation coe�cients in an interpolated n-gram

model. In particular, consider the unigram model. This has one interpolation coe�cient for

mixing the unigrammodel with the uniform model. If the sample does not contain all words

in V then this interpolation coe�cient should be strictly less than 1. Intuitively we would

like to set the interpolation coe�cient to (1�M

0

) where M

0

is the probability that, when

we draw a fresh n-gram, the word w

n

is one that did not occur in the training sample. More

generally, we would intuitively like to set �(hw

n�k

: : : w

n�1

i) to (1�M

0

(hw

n�k

: : : w

n�1

i))

where M

0

(hw

n�k

: : : w

n�1

i) is the probability, given context hw

n�k

: : : w

n�1

i, that w

n

has

not occurred previously with this context in the sample. The fundamental Good-Turing

estimator estimates this \missing mass".

Since the publication of the Good-Turing estimators in 1953 (Good 1953), these estimators

have been used extensively in language modeling applications (Chen and Goodman 1998;

Church and Gale 1991; Katz 1987). According to Good (Good 2000), the Good-Turing

estimators were developed by Alan Turing during World War II while breaking Enigma

codes. The Enigma was an encryption device used by the German navy. The Enigma

used, as part of its encryption key, a three letter sequence. These three letter sequences

were selected from a book containing all such sequences in a random order. However, a

person opening the book and selecting an entry was likely to select a previously used

entry, say the entry on the top of a page where the binding of the book was creased. Given

a sample of previously used entries, Turing wanted to estimate the likelihood that the

current unknown entry was one that had been previously used, and further, to estimate

the probability distribution over the previously used entries.

Although Good-Turing estimation can be motivated by n-gram models, the discussion of

these estimators can be simpli�ed by considering a process of drawing words from a single

�xed distribution on words. In an n-gram model, the distribution will be the conditional

distribution for some context of the model. But for the remainder of this section we

consider drawing words from an arbitrary �xed distribution on words. The analysis of

Good-Turing estimators discussed here does not rely on the use of a �nite vocabulary so,

for this section only, we allow the underlying vocabulary of words to be in�nite. We simply

assume an unknown probability distribution P on a countable set V and we denote the

probability of word w by P

w

. Although V can be any countable set we will continue to

call the elements of V \words". We consider a sample S of m words drawn independently

from V , each according to distribution P . For a sample S of m words and for any word

w 2 V we de�ne the count of w, denoted c(w), to be the number of times word w occurs

in the sample S. For any integer k � 0, we de�ne S

k

to be the set of words w 2 V such

that c(w) = k. Note that S

0

is the set of words in V not occurring in S. We de�ne M

k

to

be the probability of drawing a word in the set S

k

:

M

k

�

X

w2S

k

P

w

:

Note that M

k

depends on the sample, i.e., it is a random variable. The quantity M

0

is

the so-called missing mass, i.e., the total probability mass of words not occurring in the

sample.

The Good-Turing estimator of the missing mass M

0

is G

0

� jS

1

j=m, i.e., the fraction

of examples seen exactly once. More generally, the Good-Turing estimator G

k

of M

k

is

de�ned to be

G

k

�

k + 1

m

jS

k+1

j: (3)

To understand these de�nitions, it is useful to view the Good-Turing estimators as leave-

one-out estimators of the random variables M

k

. We can de�ne a general notion of a

leave-one-out estimator by letting �[S; w] be any statement relating a sample S to

a word w. De�ne P (�[S; w]) to be the probability that when we draw a sample S

and then a fresh word w we have that �[S; w] holds. Consider P (w 2 S

k

). Note that

P (w 2 S

k

j S) equals the value of M

k

for the sample S. So we have that the expected

value of M

k

is

P

S

P (S)P (w 2 S

k

j S) which equals P (w 2 S

k

). For any �xed sample

S and element w 2 S de�ne Snw to be the sample with the element w removed (the

count of w is reduced by one). The leave-one-out estimate of P (�[S; w]) is de�ned to be

1

m

jfw 2 S : �[Snw; w]gj. In general we have that the expectation of the leave-one-out

estimate of P (�[S; w]) on a sample of size m equals P (�[S; w]) on a sample of size m�1.

The leave-one-out estimate of P (w 2 S

k

) turns out to be the fraction of the sample that

occurs k + 1 times in the sample, i.e., G

k

as de�ned in equation (3).

It is not hard to show that the expectations of G

k

and M

k

are close to one another.

Nevertheless, this does not tell us how good an estimate G

k

will be ofM

k

. We are therefore

interested in giving a con�dence interval for M

k

as a function of G

k

, the sample size m

and the con�dence level �. We do this by showing that, with high con�dence, both G

k

and

M

k

are near their respective expectations. In (McAllester and Schapire 2000) we prove

the following where, for �xed constants, we have that (5) and (6) hold with probability at

least 1� �:

jE [G

k

]� E [M

k

] j � O

�

k + 1

m

�

(4)

jG

k

� E [G

k

] j � O

(k + 1)

r

ln

2

�

m

!

(5)

jM

k

� E [M

k

] j � O

�

1 + k + ln

m

�

�

r

ln

2

�

m

!

: (6)

Thus, together these bounds imply that as m gets large (with k �xed), the di�erence

between G

k

and M

k

goes to zero; the bounds also tell us that this convergence to zero

goes like 1=

p

m. The constants in the bounds are modest but greater than one and both

(5) and (6) become vacuous for k �

p

m. Bound (5) is a simple corollary of McDiarmid's

theorem (given below). Bound (6) is also proved using McDiarmid's theorem but the

proof is considerably more di�cult and the term of ln(m=�) is probably an artifact of the

proof method. In the next section we focus on the special case of M

0

and refer the reader

to (McAllester and Schapire 2000) for the case of k > 0.

5 AN ANALYSIS OF G

0

Here we focus on the estimate G

0

of the missing mass. The accuracy of this estimator is

covered by the above theorem for the case of k = 0. However, we were able to prove an

upper bound M

0

that eliminates the term ln(m=�) in (6). More speci�cally, the following

holds with high probability over the choice of the sample.

Theorem 1 With probability at least 1� � over the choice of the sample

M

0

� G

0

+ (2

p

2 +

p

3)

r

ln(

3

�

)

m

:

Because theorem 1 is potentially signi�cant for language modeling, and because it provides

a case study in the analysis of a nontrivial leave-one-out estimator, we now present some

of the details of its proof.

It is shown in (McAllester and Schapire 2000) that E [M

0

] � E [G

0

]. This implies that

M

0

� G

0

+ (E [G

0

]�G

0

) + (M

0

� E [M

0

]):

So it now su�ces to give convergence rates of G

0

and M

0

to their respective means. To

bound the di�erence between G

0

and its expectation, and the di�erence between M

0

and

its expectation, we use McDiarmid's theorem. This beautiful and very useful theorem

allows us to bound how fast any function of m independent random variables converges to

its mean, provided that the function is not too sensitive to changes in individual variables.

Theorem 2 (McDiarmid 1989) Let X

1

, : : :, X

m

be independent random variables taking

values in a set V and let f : V

m

! R be such that

sup

x

1

;:::;x

m

;x

0

i

2V

jf(x

1

; : : : ; x

m

)� f(x

1

; : : : ; x

i�1

; x

0

i

; x

i+1

; : : : ; x

m

)j � c

i

:

Then with probability at least 1� �

f(X

1

; : : : ; X

m

)� E [f(X

1

; : : : ; X

m

)] �

r

ln(

1

�

)

P

m

i=1

c

2

i

2

;

and with probability at least 1� �

E [f(X

1

; : : : ; X

m

)]� f(X

1

; : : : ; X

m

) �

r

ln(

1

�

)

P

m

i=1

c

2

i

2

:

A natural special case is x

i

2 [0; 1] and f(x

1

; : : : ; x

n

) =

1

m

P

m

i=1

x

i

. In this case, c

i

= 1=m

and McDiarmid's theorem reduces to the Hoe�ding inequalities.

We �rst note that a single change in the sample can change G

0

by at most 2=m. Thus,

applying McDiarmid's theorem immediately gives a bound on the di�erence between G

0

and its mean. In the following, 8

�

S�[S; �] is an alternate notation for P (�[S; �]) � 1� �

so we can read 8

�

S �[S; �] as \for all but a fraction � of the samples S we have �[S; �]".

Lemma 3

8� > 0 8

�

S E [G

0

]�G

0

�

p

2

r

ln

1

�

m

This leaves us with the more di�cult problem of bounding M

0

� E [M

0

]. To bound

this di�erence we divide M

0

into a high frequency component M

+

0

and a low frequency

component M

�

0

as follows:

M

+

0

�

X

w:P

w

>1=m; c(w)=0

P

w

:

M

�

0

�

X

w:P

w

�1=m; c(w)=0

P

w

:

We prove the following two lemmas separately:

Lemma 4 8� > 0 8

�

S M

+

0

� E

�

M

+

0

�

+

r

3 ln(

1

�

)

m

:

Lemma 5 8� > 0 8

�

S M

�

0

� E

�

M

�

0

�

+

r

2 ln(

1

�

)

m

:

Lemma 5 follows from an application of McDiarmid's theorem and the observation that a

single change in the sample can change M

�

0

by at most 2=m. Lemma 4 is more involved

and is proved at the end of this section. Theorem 1 now follows by applying the union

bound to Lemmas 3, 4 and 5. The union bound implies that if we have

8� > 0 8

�

S �

1

[S; �]

.

.

.

8� > 0 8

�

S �

k

[S; �]

then we have

8� > 0 8

k�

S �

1

[S; �] ^ : : : ^ �

k

[S; �]

since

Pr

"

_

i

:�

i

[S; �]

#

�

X

i

Pr [:�

i

[S; �]] :

It now remains only to prove Lemma 4. Let B = fw 2 V : P

w

> 1=mg. For each word

w 2 B, we introduce a random variable X

w

which is 1 if w does not occur in the sample

and 0 otherwise. We can then write M

+

0

as

M

+

0

=

X

w2B

P

w

X

w

:

The counts are \contravariant," meaning that making one larger tends to make the others

smaller and vice-versa. Furthermore, any system of monotonic functions of the counts

is also contravariant. This allows us to prove the following lemma which generalizes an

observation made in (Panconesi and Srinivasan 1997), and which will allow us to treat

these dependent count variables as if they were independent.

Lemma 6 For any �nite subset B of the underlying vocabulary, and for any choice of

a non-negative monotonically decreasing function f

w

for each word w 2 B, we have the

following:

E [�

w2B

f

w

(c(w))] � �

w2B

E [f

w

(c(w))]

Proof: See appendix. 2

Lemma 6 also holds if all f

w

are monotonically increasing, but we will only need the

decreasing case here.

We now use lemma 6 to prove the following.

Lemma 7 For � > 0 and � > 0 we have

Pr

�

M

+

0

� E

�

M

+

0

�

+ �

�

� e

F (�)���

where

F (�) �

X

w: P

w

>1=m

�

ln(Q

w

e

�P

w

+ (1�Q

w

))� �P

w

Q

w

�

and Q

w

= (1� P

w

)

m

is the probability that word w does not occur in the sample.

Proof:

Pr

�

M

+

0

� E

�

M

+

0

�

+ �

�

= Pr

�

exp

��

�(M

+

0

� E

�

M

+

0

�

� �)

��

� 1

�

� E

�

exp

�

�(M

+

0

� E

�

M

+

0

�

� �)

��

= e

��(E

[

M

+

0

]

+�)

E

h

e

�M

+

0

i

= e

��(E

[

M

+

0

]

+�)

E

�

�

w2B

e

�P

w

X

w

�

� e

��(E

[

M

+

0

]

+�)

Y

w2B

E

�

e

�P

w

X

w

�

= exp

���� �

X

w2B

P

w

Q

w

!

Y

w2B

�

Q

w

e

�P

w

+ (1�Q

w

)e

0

�

= exp

���� �

X

w2B

P

w

Q

w

!

Y

w2B

�

1 +

�

e

�P

w

� 1

�

Q

w

�

= exp

���� �

X

w2B

P

w

Q

w

!

exp

X

w2B

ln

�

1 +

�

e

�P

w

� 1

�

Q

w

�

!

= e

F (�)���

:

The �rst inequality uses Markov's inequality (E [X] � aPr [X � a] for X nonnegative).

Lemma 6 was used in the second inequality. 2

Next we prove the following bound on the function F (�):

Lemma 8 For � � m=2

F (�) �

�

2

(e� 1)m

:

Proof: First, note that F (0) = 0. Now let F

0

(�) denote the �rst derivative of F , i.e.,

dF=d� evaluated at �. Then

F

0

(�) =

X

w: P

w

>1=m

Q

w

P

w

(1�Q

w

)e

��P

w

+Q

w

�Q

w

P

w

:

Note that F

0

(0) = 0. Now letting F

00

(�) denote the second derivative of F we get that

F

00

(�) =

X

w: P

w

>1=m

Q

w

P

2

w

(1�Q

w

)e

��P

w

[(1�Q

w

)e

��P

w

+Q

w

]

2

�

X

w: P

w

>1=m

Q

w

P

2

w

(1�Q

w

)e

��P

w

[(1�Q

w

)e

��P

w

]

2

=

X

w: P

w

>1=m

Q

w

P

2

w

(1�Q

w

)e

��P

w

=

X

w: P

w

>1=m

P

w

Q

w

P

w

e

�P

w

(1�Q

w

)

�

X

w: P

w

>1=m

P

w

P

w

e

(��m)P

w

(1�Q

w

)

�

X

w: P

w

>1=m

P

w

P

w

e

(��m)P

w

(1� 1=e)

where the last two inequalities use the inequality Q

w

= (1� P

w

)

m

� e

�mP

w

which is at

most 1=e for P

w

� 1=m. For � > 0 and x � 0 one can show, by maximizing over x, that

xe

��x

�

1

�e

:

For � < m, we can use this inequality with � = (m� �) to get that

F

00

(�) �

X

w: P

w

>1=m

P

w

1

(e� 1)(m� �)

�

1

(e� 1)(m� �)

:

Since � � m=2 we then have that

F

00

(�) �

2

(e� 1)m

:

By Taylor's formula,

F (�) = F (0) + �F

0

(0) +

�

2

2

F

00

(�

0

)

for some �

0

2 (0; �). The lemma now follows from F (0) = 0, F

0

(0) = 0 and F

00

(�

0

) �

2=((e� 1)m). 2

Proof of Lemma 4: Let � = m�=2. Lemmas 7 and 8 together imply that

Pr

�

M

+

0

� E

�

M

+

0

�

+ �

�

� exp

�

�

2

(e� 1)m

� ��

�

= exp

�

m�

2

4(e� 1)

�

m�

2

2

�

� e

�m�

2

=3

:

Lemma 4 now follows by setting this probability equal to � and solving for �. 2

6 CONCLUSIONS: LEAVE-ONE-OUT MINIMIZATION

We stated in Section 3 that one of the fundamental problems in the theory of language

modeling is to explain why models that memorize the training data do not over�t. There

are various approaches to this problem. Bayesian model averaging memorizes the training

data and can be justi�ed with Bayesian assumptions. PAC-Bayesian model averaging is

similar to Bayesian model averaging in that it is based on a prior distribution on models

but, unlike Bayesian model averaging, PAC-Bayesian model averaging can be justi�ed

independent of Bayesian assumptions about the meaning of the prior (McAllester 1999).

Unfortunately, neither the Bayesian approach nor the PAC-Bayesian approach justify the

particular form of the smoothing methods in language modeling that work well in practice.

So the real theoretical challenge is to explain the superiority of the methods that are in

fact empirically best.

The Good-Turing estimate of the missing mass is fundamentally non-Bayesian | it is a

direct measure of the quantity of missing mass and converges rapidly to the estimated

quantity. The estimate of the missing mass is analogous to a statistical mean estimator,

such as estimating the bias of a biased coin. The convergence rate guarantees that for large

samples the estimate is accurate independent of Bayesian assumptions. It seems that a

non-Bayesian justi�cation | a justi�cation not involving a prior on models | should be

possible for modeling methods based on the Good-Turing estimators.

The Good-Turing estimators are leave-one-out estimators. The convergence results on

the Good-Turing estimators show that, at least in some cases, leave-one-out estimators

can be guaranteed to be accurate | one can give Cherno�-like con�dence intervals for

the true value of the estimated quantity. Recently Bousquet and Elissee� have de�ned

a general notion of a stable learning algorithm and have used McDiarmid's theorem

to show that for any algorithm that is stable in their sense the leave-one-out estimate

of the generalization loss has Cherno�-like convergence (Bousquet and Elissee� 2001).

Unfortunately their de�nition of stability is fairly restrictive. They require, essentially,

that changing a single instance in a sample of m instances does not change the model

by more than O(1=m) where the distance between models is taken to be the maximum

di�erence between the loss of the two models over all possible instances. It is interesting

that several well known modeling algorithms can be shown to be stable in this very strong

sense. But these stability requirements are too strong to make Bousquet and Elissee�'s

results applicable to Good-Turing estimation or n-gram language models. A single change

in a (very unlikely) sample can radically alter M

+

0

. Our proof of a convergence rate for

M

+

0

is not based on McDiarmid's theorem.

We will say that a learning algorithm is leave-one-out measurable if the leave-one-out

estimate of the error of the algorithm has Cherno�-like convergence | with probability

at least 1� � the di�erence between the leave-one-out estimate of the generalization error

and the true generalization error on a sample of size m is bounded by O(

p

ln(1=�)=m).

Bousquet and Elissee� show that stable algorithms are leave-one-out measurable but

presumably many unstable algorithms are also leave-one-out measurable. It is known

that many learning algorithms are not leave-one-out measurable | the algorithm that

produces the model that either always guesses 1 or always guesses 0 based on the number

of 1's and 0's in the sample is not leave-one-out measurable. However, we conjecture that

n-gram language models under any of a variety of smoothing methods are leave-one-out

measurable.

For any family of leave-one-out measurable algorithms we could select an algorithm by

minimizing leave-one-out error over the algorithms in the family. For example, we can

de�ne a family of n-gram learning algorithms where each algorithm uses a di�erent (large)

set of interpolation parameters. In general one could combine the Cherno�-like convergence

of the leave-one-out estimator with a union bound over a large class of learning algorithms

to bound the generalization error of the algorithm minimizing the leave-one-out estimate.

This leave-one-out minimization over a large class of algorithms seems fundamentally

di�erent from the usual empirical loss minimization over a class of models. We hope to

investigate leave-one-out minimization in future work on language modeling.

References

Blumer, A., A. Ehrenfeucht, D. Haussler, and M. K. Warmuth (1987, April). Occam's

razor. Information Processing Letters 24 (6), 377{380.

Bousquet, O. and A. Elissee� (2001). Algorithmic stability and generalization perfor-

mance. In Advances in Neural Information Processing Systems 13.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the 1st Meet-

ing of the North American Chapter of the Association for Computational Linguistics,

pp. 132{139.

Chelba, C. and F. Jelinek (1998). Exploiting syntactic structure for language modeling. In

Proceedings of the Thirty-Sixth Annual Meeting of the Association for Computational

Linguistics and Seventeenth International Conference on Computational Linguistics.

Chen, S. and J. Goodman (1998, August). An empirical study of smoothing techniques

for language modeling. Technical Report TR-10-98, Harvard University.

Church, K. W. and W. A. Gale (1991). A comparison of the enhanced Good-Turing and

deleted estimation methods for estimating probabilities of English bigrams. Computer

Speech and Language 5, 19{54.

Collins, M. (1997). Three generative, lexicalised models for statistical parsing. In Proceed-

ings of the 35th Annual Meeting of the ACL.

Cover, T. M. and J. A. Thomas (1991). Elements of Information Theory. Wiley.

Good, I. J. (1953, December). The population frequencies of species and the estimation

of population parameters. Biometrika 40 (16), 237{264.

Good, I. J. (2000). Turing's anticipation of emprical Bayes in connection with the

cryptanalysis of the Naval Enigma. Journal of Statistical Computation and Simula-

tion 66 (2), 101{112.

Katz, S. M. (1987, March). Estimation of probabilities from sparse data for the language

model component of a speech recognizer. IEEE Transactions on Acoustics, Speech and

Signal Processing ASSP-35 (3), 400{401.

McAllester, D. (1999). PAC-Bayesian model averaging. In Proceedings of the Twelfth

Annual Conference on Computational Learning Theory.

McAllester, D. and R. Schapire (2000). On the convergence rate of Good-Turing estima-

tors. In Proceedings of the Thirteenth Annual Conference on Computational Learning

Theory.

McDiarmid, C. (1989). On the method of bounded di�erences. In Surveys in Combinatorics

1989, pp. 148{188. Cambridge University Press.

Panconesi, A. and A. Srinivasan (1997, April). Randomized distributed edge coloring via

an extension of the Cherno�-Hoe�ding bounds. SIAM Journal of Computing 26 (2),

350{368.

Pereira, F. C. and Y. Singer (1999). An e�cient extension to mixture techniques for

prediction and decision trees. Machine Learning 36.

A PROOF OF LEMMA 6

To prove Lemma 6 we need some preliminary lemmas. For each word w �x a monotonically

decreasing non-negative function f

w

. For any sample S let S

B

be the subset of the sample

consisting of words in the set B. We start with the following lemma.

Lemma 9 For any (possibly in�nite) subset B of the vocabulary we have that

E [�

w2B

f

w

(c(w)) j jS

B

j = k]

is a monotonically decreasing function of k.

Proof: For any sample S let c(w; S) be the count of word w in sample S. For any pair of

samples S and U we have c(w; S

B

[U

B

) � c(w; S

B

) and hence

�

w2B

f

w

(c(w; S

B

[U

B

)) � �

w2B

f

w

(c(w; S

B

)):

So for k

1

� k

2

we have

X

jS

B

j=k

1

; jU

B

j=k

2

�k

1

P (S

B

j jS

B

j = k

1

)P (U

B

j jU

B

j = k

2

� k

1

)�

w2B

f

w

(c(w; S

B

[U

B

))

�

X

jS

B

j=k

1

; jU

B

j=k

2

�k

1

P (S

B

j jS

B

j = k

1

)P (U

B

j jU

B

j = k

2

� k

1

)�

w2B

f

w

(c(w; S

B

)):

The left hand side equals E [�

w2B

f

w

(c(w)) j jS

B

j = k

2

] and the right hand side equals

E [�

w2B

f

w

(c(w)) j jS

B

j = k

1

]. 2

Lemma 10 For w

0

62 B we have that E [�

w2B

f

w

(c(w)) j c(w

0

) = k] is a monotonically

increasing function of k.

Proof: Let V nw

0

be the set of all words other than w

0

. Let g

w

be f

w

for w 2 B and the

constant function 1 otherwise. We then have �

w2B

f

w

(c(w)) = �

w2V nw

0

g

w

(c(w)) which

gives the following:

E

�

�

w2B

f

w

(c(w)) j c(w

0

) = k

�

= E

�

�

w2V nw

0

g

w

(c(w)) j jS

V nw

0

j = m� k

�

:

The result now follows from Lemma 9. 2

We now prove Lemma 6 by induction on the number of words in B. The result is immediate

if B contains only a single word. Now assume the result holds for sets smaller than B and

consider w 2 B. Let Bnw be the word set B minus the word w. We now have

E [�

w2B

f

w

(c(w))] =

m

X

k=0

P (c(w) = k)f

w

(k)E

�

�

w

0

2Bnw

f

w

0

(c(w

0

)) j c(w) = k

�

:

We now use the fact that for any functions f and g from reals to reals, and any distribution

P on the reals, we have that if f is monotonically decreasing and g is monotonically

increasing then E

k�P

[f(k)g(k)] � E

k�P

[f(x)] E

k�P

[g(x)]. This gives

E [�

w2B

f

w

(c(w))] � E [f

w

(c(w)] E

�

�

w

0

2Bnw

f

w

0

(c(w

0

))

�

:

Lemma 6 now follows from the induction hypothesis applied to the set Bnw.

