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This paper describes new and efficient algorithms for learning deter-
ministic finite automata. Our approach is primarily distinguished by two
features: (1) the adoption of an average-case setting to model the ``typi-
cal'' labeling of a finite automaton, while retaining a worst-case model for
the underlying graph of the automaton, along with (2) a learning model
in which the learner is not provided with the means to experiment with
the machine, but rather must learn solely by observing the automaton's
output behavior on a random input sequence. The main contribution of
this paper is in presenting the first efficient algorithms for learning non-
trivial classes of automata in an entirely passive learning model. We adopt
an on-line learning model in which the learner is asked to predict the out-
put of the next state, given the next symbol of the random input
sequence; the goal of the learner is to make as few prediction mistakes as
possible. Assuming the learner has a means of resetting the target
machine to a fixed start state, we first present an efficient algorithm that
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makes an expected polynomial number of mistakes in this model. Next,
we show how this first algorithm can be used as a subroutine by a second
algorithm that also makes a polynomial number of mistakes even in the
absence of a reset. Along the way, we prove a number of combinatorial
results for randomly labeled automata. We also show that the labeling of
the states and the bits of the input sequence need not be truly random,
but merely semi-random. Finally, we discuss an extension of our results
to a model in which automata are used to represent distributions over
binary strings. ] 1997 Academic Press

1. INTRODUCTION

In this paper, we describe new and efficient algorithms for learning deterministic
finite automata. Our approach is primarily distinguished by two features:

v The adoption of an average-case setting to model the ``typical'' labeling of a
finite automaton, while a worst-case model is retained for the underlying graph of
the automaton.

v A learning model in which the learner is not provided with the means to
experiment with the machine, but rather must learn solely by observing the
automaton's output behavior on a random input sequence.

Viewed another way, we may think of the learner as a robot taking a random walk
in a finite-state environment whose topology may be adversarially chosen, but
where the sensory information available to the robot from state to state has limited
dependence.

An important feature of our algorithms is their robustness to a weakening of the
randomness assumptions. For instance, it is sufficient that the states be labeled in
a manner that is both partially adversarial and partially random; this is discussed
further momentarily.

One of our main motivations in studying a model mixing worst-case and
average-case analyses was the hope for efficient passive learning algorithms that
remained in the gap between the pioneering work of Trakhtenbrot and Barzdin'
[25] and the intractability results discussed in the history section below for passive
learning in models where both the state graph and the labeling are worst-case. In
the former work, there is an implicit solution to the problem of efficient passive
learning when both the graph and labeling are chosen randomly, and there are also
many exponential-time algorithms in mixed models similar to those we consider.
The choice of a random state graph, however, tends to greatly simplify the problem
of learning, due in part to the probable proximity of all states to one another. The
problem of efficient learning when the graph is chosen adversarially but the labeling
randomly was essentially left open by Trakhtenbrot and Barzdin'. In providing
efficient algorithms for passive learning in this case, we demonstrate that the topol-
ogy of the graph cannot be the only source of the apparent worst-case difficulty of
learning automata passively (at least for the random walk model we consider), but
rather that the difficulty seems to arise from particular combinations of topology
and labeling.
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We give algorithms that learn with respect to a worst-case choice of the under-
lying directed state graph (transition function) of the target automaton along with
a random choice of the [+, &]-labeling (output function) of the states.
Throughout most of the paper, we assume that the label at each state is determined
by the outcome of an unbiased coin flip; however, our algorithms are robust in the
sense that they continue to work even when there is only limited independence
among the state labels. Limited independence is formalized using the semi-random
model of Santha and Vazirani [24], in which each label is determined by the out-
come of a coin flip of variable bias chosen by an omniscient adversary to be
between 2 and 1&2. In addition to investigations of their properties as a computa-
tional resource [6, 24, 27, 28], semi-random sources have also been used as a
model for studying the complexity of graph coloring that falls between worst-case
and average-case (random) models [5], and as a model for biased random walks
on graphs [3].

In our setting, the learner observes the behavior of the unknown machine on a
random walk. (As for the random labeling function, the walk may actually be only
semi-random.) At each step, the learner must predict the output of the machine (the
current state label) when it is fed the next randomly chosen input symbol. The goal
of the learner is to minimize the expected number of prediction mistakes, where the
expectation is taken over the choice of the random walk.

Our first algorithm, for any state graph, and with high probability over the
random labeling of the state graph, will make only an expected polynomial number
of mistakes. In fact, we show that this algorithm has the stronger property of
reliability [22]: if allowed to output either a [+, &]-prediction or the special sym-
bol ``?'' (called a default mistake) the algorithm will make no prediction mistakes
and only an expected polynomial number of default mistakes. In other words, every
[+, &]-prediction made by the algorithm will be correct.

This first algorithm assumes that the target machine is returned to a fixed start
state following each default mistake. The random walk observed by the learner is
then continued from this start state. Thus, the learner is essentially provided with
a reset mechanism (but is charged one default mistake each time it is used), so the
data seen by the learner can be thought of as a sample of finite length input�output
behaviors of the target machine. This view allows us to prove performance bounds
in an average-case version of the popular PAC model of learning.

In our second algorithm, we are able to remove the need for the reset. The
second algorithm thus learns by observing the output of a single, unbroken random
walk. For this, we sacrifice reliability, but are nevertheless able to prove polynomial
bounds on the absolute number of prediction mistakes and the expected number of
default mistakes. The removal of the reset mechanism is particularly important
in the motivation offered above of a robot exploring an environment; in such a
setting, each step of the robot's random walk is irreversible and the robot must
learn to ``orient'' itself in its environment solely on the basis of its observations.

Finally we give a modification of our algorithm which applies to the setting of
learning probability distributions over binary strings. The algorithm of Ron et al.
[23] which learns acyclic probabilistic finite automata builds on the algorithm given
here. Their algorithm has been successfully applied to the problem of handwriting
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recognition and the modeling of phonemes. to construct multiple-pronunciation
models for spoken words.

Following a history of the problem of learning finite automata and the definitions
of our models, the paper is organized into three technical sections: one describing
each of the two algorithms and a third describing extensions. Each of the two algo-
rithm sections consists of two parts. In the first part, we define ``nice'' combinatorial
properties of finite automata that hold with high probability over a random (or
semi-random) labeling of any state graph. The second part then describes how the
algorithm exploits these properties in order to efficiently learn the target
automaton.

For our first algorithm, which assumes the reset mechanism, the important com-
binatorial object is the signature of a state of the machine. Informally, the signature
of a particular state describes the input�output behavior of the machine for some
fixed ``neighborhood'' of the given state. Our algorithm exploits a theorem stating
that with high probability the signature of every state is unique.

For our first algorithm, which assumes the reset mechanism, the important com-
binatorial object is the signature of a state of the machine. Informally, the signature
of a state q is a complete description of the output behavior of all states within a
small distance of q. Our algorithm exploits a theorem stating that with high prob-
ability the signature of every state is unique.

For our second algorithm, which eliminates the reset mechanism, the important
combinatorial object is the local homing sequence, which is related to but weaker
than the homing sequences used by Rivest and Schapire [20]. Informally, a (local)
homing sequence is an input sequence which, when executed, may allow the learner
to determine ``where it is'' in the machine based on the observed output sequence.
The algorithm hinges on our theorem stating that with high probability a short
local homing sequence exists for every state, and proceeds to identify this sequence
by simulating many copies of our first algorithm.

In the final sections, we explore both the relaxation of randomness to semi-
randomness already mentioned and a modification of our algorithms for learning
probability distributions over binary strings.

2. HISTORY OF THE PROBLEM

The problem of learning finite automata has an extensive history. To understand
this history, we broadly divide results into those addressing the passive learning of
finite automata, in which the learner has no control over the data it receives, and
those addressing the active learning of finite automata, in which we introduce
mechanisms for the learner to experiment with the target machine.

The intractability results for various passive learning models begin with the work
of Gold [11] and Angluin [2], who proved that the problem of finding the
smallest automaton consistent with a set of accepted and rejected strings is NP-
complete. This result left open the possibility of efficiently approximating the
smallest machine, which was later dismissed in a very strong sense by the NP-hard-
ness results of Pitt and Warmuth [18, 19]. Such results imply the intractability of
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learning finite automata (when using finite automata as the hypothesis representa-
tion) in a variety of passive learning models, including the well-studied ``probably
approximately correct'' (or PAC) model introduced by Valiant [26] and the mis-
take-bound models of Littlestone [16] and Haussler et al. [12].

These results demonstrated the intractability of passively learning finite
automaton when we insist that the hypothesis constructed by the learner also be a
finite automaton, but did not address the complexity of passively learning finite
automata by more powerful representations. Although such changes of hypothesis
representation can in some instances provably reduce the complexity of certain
learning problems from NP-hard to polynomial time [17], Kearns and Valiant
[14] demonstrated that this is not the case for finite automata by proving that
passive learning in the PAC model by any reasonable representation is as hard as
breaking various cryptographic protocols that are based on factoring. This again
implies intractability for the same problem in the mistake-bound models.

The situation becomes considerably brighter when we turn to the problem of
actively learning finite automata. Angluin [1], elaborating on an algorithm of Gold
[10], proved that if a learning algorithm is provided with both passive counter-
examples to its current hypothesis automaton (that is, arbitrary strings on which
the hypothesis automaton disagrees with the target) and the ability to actively
query the target machine on any string of the algorithm's choosing (known as mem-
bership queries), then finite automata are learnable in polynomial time. This result
provides an efficient algorithm for learning finite automata in the PAC model
augmented with membership queries. Together with the results of Kearns and
Valiant [14], this separates (under cryptographic assumptions) the PAC model
and the PAC model with membership queries, so experimentation provably helps
for learning finite automata in the PAC setting.

The Angluin and Gold algorithm essentially assumes the existence of an
experimentation mechanism that can be reset: on each membership query x, the
target automaton is executed on x and the final state label is given to the learner;
the target machine is then reset in preparation for the next query. Rivest and
Schapire [20, 21] considered the natural extension in which we regard the target
automaton as representing some aspect of the learner's physical environment, and
in which experimentation is allowed, but without a reset. The problem becomes
more difficult since the learner is not directly provided with the means to ``orient''
itself in the target machine. Nevertheless, Rivest and Schapire extend Angluin's
algorithm and provide a polynomial time algorithm for inferring any finite
automaton from a single continuous walk on the target automaton. Variants of this
algorithm have recently been examined by Dean et al. [7].

All of the results discussed above, whether in a passive or an active model, have
considered the worst-case complexity of learning: to be considered efficient, algo-
rithms must have small running time on any finite automaton. However, average-
case models have been examined in the extensive work of Trakhtenbrot and
Barzdin' [4, 25]. In addition to providing a large number of extremely useful
theorems on the combinatorics of finite automata, Trakhtenbrot and Barzdin' also
give many polynomial time and exponential time inference algorithms in both
worst-case models, and models in which some property of the target machine (such
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as the labeling or the graph structure) is chosen randomly. For an interesting
empirical study of the performance of one of these algorithms, see Lang's paper
[15] on experiments he conducted using automata that were chosen partially or
completely at random.

The primary lesson to be gleaned from the previous work on learning finite
automata is that passive learning of automata tends to be computationally difficult.
Thus far, only the introduction of active experimentation has allowed us to ease
this intractability. The main contribution of this paper is in presenting the first
efficient algorithms for learning non-trivial classes of automata in an entirely
passive learning model.

3. PRELIMINARIES

A deterministic finite automaton is a tuple M=(Q, {, #, q0). Here Q is a finite
non-empty set of n states; {: Q_[0, 1] � Q is the transition function;
#: Q � [+, &] is the labeling function; and q0 # Q is the designated start state.
Notice that here we have assumed an input alphabet of [0, 1] and an output
alphabet of [+, &] for simplicity; the results presented here all generalize to larger
input and output alphabets.

We adopt the following notational conventions: For q a state of M and
x # [0, 1]* we denote by qx # Q the state of M reached by executing the walk x
from state q (as defined by {). We denote by q(x) the sequence of length |x|+1
of [+, &] labels observed along this walk. Finally, we write x(i) to denote the
length i prefix of x.

The state set Q and the transition function { taken together (but without the
state labeling #) define the underlying automaton graph GM(Q, {)=GM of machine
M. Thus, throughout the paper GM denotes a directed graph on the states in Q,
with each directed edge labeled by either a 0 or a 1, and with each state having
exactly one outgoing 0-edge and one outgoing 1-edge.

In all of the learning models considered in this paper, we give algorithms for lear-
ning with respect to a worst-case underlying automaton graph GM , but with respect
to a random labeling # of GM . Thus we may think of the target machine M as being
defined by the combination of an adversary who chooses the underlying automaton
graph GM , followed by a randomly chosen labeling # of GM . Here by random we
shall always mean that each state q # Q is randomly and independently assigned a
label + or & with equal probability. Since all of our algorithms will depend in
some way on special properties that for any fixed GM hold with high probability
(where this probability is taken over the random choice of the labeling #), we make
the following general definition.

Definition 1. Let Pn, $ be any predicate on n-state finite automata which
depends on n and a confidence parameter $ (where 0�$�1). We say that
uniformly almost all automata have property Pn, $ if the following holds: for all
$>0, for all n>0 and for any n-state underlying automaton graph GM , if we
randomly choose [+, &] labels for the states of GM , then with probability at least
1&$, Pn, $ holds for the resulting finite automaton M.

28 FREUND ET AL.
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The expression ``uniformly almost all automata'' is borrowed from Trakhtenbrot
and Barzdin' [25] and was used by them to refer to a property holding with high
probability for any fixed underlying graph. (The term ``uniformly'' thus indicates
that the graph is chosen in a worst-case manner.)

Throughout the paper $ quantifies confidence only over the random choice of
labeling for the target automaton M. We will require our learning algorithms, when
given $ as input, to ``succeed'' (where success will be defined shortly) for uniformly
almost all automata. Thus, for any fixed underlying automaton graph GM , the algo-
rithms must succeed with probability 1&$, where this probability is over the
random labeling.

In this paper we shall primarily consider two basic models for learning finite automata:
one model in which the learner is given a mechanism for resetting the target machine to
its initial state, and one model in which such a mechanism is absent. In both models the
learner will be expected to make continuous predictions on an infinitely long random
walk over the target machine, while being provided feedback after each prediction.

More precisely, in both models the learner is engaged in the following unending
protocol: at the tth trial, the learner is asked to predict the [+, &] label of M at
the current state rt # Q of the random walk (the current state is the start state q0

at trial 0 and is updated following each trial in a manner described momentarily).
The prediction pt of the learner is an element of the set [+, &, ?], where we inter-
pret a prediction ``?'' as an admission of confusion on the learner's part. After
making its prediction, the learner is told the correct label lt # [+, &] of the current
state rt and therefore knows whether its prediction was correct. Note that the
learner sees only the state labels, not the state names.

The two models we consider differ only in the manner in which the current state
is updated following each trial. Before describing these update rules, we observe
that there are two types of mistakes that the learner may make. The first type,
called a prediction mistake, occurs when the learner outputs a prediction
pt # [+, &] on trial t and this prediction differs from the correct label lt . The
second type of mistake, called a default mistake, occurs any time the algorithm
chooses to output the symbol ``?.'' Note that default mistakes are preferable, since
in this case the algorithm explicitly admits its inability to predict the output.

We are now ready to discuss the two current-state update rules we will
investigate. In both models, under normal circumstances the random walk proceeds
forward from the current state. Thus, the current state rt is updated to rt+1 by
selecting an input bit bt+1 # [0, 1] at random, and setting rt+1=rt bt+1. The
learner is provided with the bit bt+1 and the protocol proceeds to trial t+1.

However, in the Reset-on-Default Model, any default mistake by the learner (that
is, any trial t such that the learner's prediction pt is ``?'') causes the target machine
to be reset to its initial state: on a ``?'' prediction we reinitialize the current state
rt+1 to be q0 and arbitrarily set bt+1=* to indicate that the random walk has been
reinitialized to proceed from q0 . Thus, by committing a default mistake the learner
may ``reorient'' itself in the target machine.

In contrast, in the more difficult No-Reset Model, the random walk proceeds
forward from the current state (that is, rt+1=rtbt+1 for a random bit bt+1) regard-
less of the prediction made by the learner.

29EFFICIENT LEARNING OF TYPICAL FINITE AUTOMATA
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Finally, we turn to the question of an appropriate definition of efficiency in our
models. Since the trial sequence is infinite, we measure efficiency by the amount of
computation per trial. Thus we say that a learning algorithm in either the Reset-on-
Default Model or the No-Reset Model is efficient if the amount of computation on
each trial is bounded by a fixed polynomial in the number of states n of the target
machine and the quantity 1�$.

In this paper we describe two main algorithms, both of which take the number
of states n and the confidence parameter $ as input and are efficient in the sense just
defined. The first algorithm works in the Reset-on-Default Model, and for
uniformly almost all target automata M (that is, for any underlying automaton
graph GM and with probability at least 1&$ over the random labeling), the algo-
rithm makes no prediction mistakes, and the expected number of default mistakes
is polynomial in n and 1�$ (where the expectation is taken only over the infinite
input bit sequence b1b2 } } } ). The second algorithm works in the No-Reset Model
and is based on the first algorithm; for uniformly almost all target automata, the
expected total number of mistakes that it makes is polynomial in n and 1�$.

4. LEARNING IN THE RESET-ON-DEFAULT MODEL

The main result of this section is an algorithm for learning uniformly almost all
automata in the Reset-on-Default model. We state this result formally:

Theorem 1. There exists an algorithm that takes n and the confidence parameter
$ as input, that is efficient, and in the Reset-on-Default Model, for uniformly almost
all n-state automata, the algorithm makes no prediction mistakes and an expected
number of default mistakes that is at most O((n5�$2) log(n�$)) (where this expectation
is taken over choice of the random walk).

As mentioned before, we first describe the combinatorial properties on which our
algorithm is based, followed by the algorithm itself.

4.1. Combinatorics

For the following definitions, let M be a fixed automaton with underlying
automaton graph GM , and let q, q1 , and q2 be states of M.

Definition 2. The d-tree of q is a complete binary tree of depth d with a state
of M at each node. The root contains state q, and if p& is the [0, 1]-path from the
root of the tree to a node &, then & contains the state qp& of M.

Note that the same state can occur several times in a signature. d-tree.

Definition 3. The d-signature of q is a complete binary tree of depth d with a
[+, &] label at each node. It is obtained by taking the d-tree of q and replacing
the state of M contained at each node by the corresponding label of that state in M.

We omit the depth of the d-signature when it is clear from context.
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Note that since a learning algorithm never sees the state names encountered on
a random walk, the d-tree of a state contains information that is inaccessible to the
learner; however, since the learner sees the state labels, the d-signature is accessible
in principle.

Definition 4. A string x # [0, 1]* is a distinguishing string for q1 and q2 if
q1(x){q2(x).

The statement of the key combinatorial theorem needed for our algorithm
follows. This theorem is also presented by Trakhtenbrot and Barzdin' [25, Theo-
rem 5.2] but we include our proof in Appendix A for completeness.

Theorem 2. For uniformly almost all automata, every pair of inequivalent states
have a distinguishing string of length at most 2 log(n2�$). Thus for d�2 log(n2�$),
uniformly almost all automata have the property that the d-signature of every state
is unique.

4.2. Algorithm

For every state q in M let 7(q) be the d-signature of q for d=2 log(n2�$). We
assume henceforth that all signatures are unique; that is, 7(q)=7(q$) if and only
if q and q$ are indistinguishable in M. From Theorem 2, this will be the case for
uniformly almost all automata.

The main idea of our algorithm is to identify every state with its signature, which
we have assumed is unique. If we reach the same state often enough, then the
signature of that state can be discovered allowing us to determine its identity. As
will be seen, this ability to determine the identity of states of the machine allows us
also to reconstruct the automaton's transition function.

An incomplete d-signature of a state q is a complete binary tree of depth d in
which some nodes are unlabeled, but the labeled nodes have the same label as in
the d-signature of q.

The essence of our algorithm is the gradual construction of M$=(Q$, {$, #$, q$0),
the hypothesis automaton. Each state q$ # Q$ can be viewed formally as a distinct
symbol (such as an integer), and each has associated with it a complete signature
(which, in fact, will turn out to be the complete signature 7(q) of some state q in
the target machine M ). In addition, the algorithm maintains a set Q$inc consisting
of states (again, arbitrary distinct symbols) whose signatures are incomplete, but
which are in the process of being completed. Once the signature of a state in Q$inc

is completed, the state may be promoted to membership in Q$.
During construction of M$, the range of the transition function {$ is extended to

include states in Q$ _ Q$inc . Thus, transitions may occur to states in either Q$ or Q$inc ,
but no transitions occur out of states in Q$inc . As described below, predictions are
made using the partially constructed machine M$ and the incomplete signatures
in Q$inc .

Initially, Q$ is empty and Q$inc=[q$0] where q$0 is the distinguished start state of M$.
For any state q$ # Q$ of the target machine, 7$(q$) denotes the (possibly partial)
signature the learner associates with q$.
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We will argue inductively that at all times M$ is homomorphic to a partial sub-
automaton of M. More precisely, we will exhibit the existence at all times of
a mapping .: Q$ _ Q$inc � Q with the properties that (1) .({$(q$, b))={(.(q$), b),
(2) #$(q$)=#(.(q$)), and (3) .(q$0)=q0 for all q$ # Q$ and b # [0, 1]. (Technically,
we have assumed implicitly (and without loss of generality) that M is reduced in
the sense that all its states are distinguishable.)

Here is a more detailed description of how our learning algorithm makes its
predictions and updates its data structures. The algorithm is summarized in Fig. 1.
Initially, and each time that a reset is executed (following a default mistake), we
reset M$ to its start state q$0 . The machine M$ is then simulated on the observed
random input sequence, and predictions are made in a straightforward manner
using the constructed output function #$. From our inductive assumptions on ., it
follows easily that no mistakes occur during this simulation of M$. This simulation
continues until a state q$ is reached with an incomplete signature, that is, until we
reach a state q$ # Q$inc .

At this point, we follow a path through the incomplete signature of q$ beginning
at the root node and continuing as dictated by the observed random input
sequence. At each step, we predict the label of the current node. We continue in this
fashion until we reach an unlabeled node, or until we ``fall off '' of the signature tree
(that is, until we attempt to exit a leaf node). In either case, we output ``?'' and so

1. Q$ � <; Q$inc � [q$0].

2. q$ � q$0 .

3. While q$ � Q$inc do the following:
On observing input symbol b, set q$ � {$(q$, b), and predict #$(q$).

4. Traverse the path through 7$(q$) as dictated by the input sequence. At each step, predict the label
of the current node. Continue until an unlabeled node is reached, or until the maximum depth of
the tree is exceeded.

5. Predict ``?.'' If at an unlabeled node of 7$(q$), then label it with the observed output symbol.

6. If 7$(q$) is complete then ``promote'' q$ as follows:

(a) Q$inc � Q$inc&[q$]

(b) if 7$(q$)=7$(X1)r$ for some r$ # Q$ then

�� find s$, b such that {$(s$, b)=q$

�� {$(s$, b) � r$.

(c) else

�� Q$ � Q$ _ [q$]

�� create new states r$0 and r$1

�� Q$inc � Q$inc _ [r$0 , r$1]

�� partially fill in signatures of r$0 , r$1 using 7$(q$)

�� {$(q$, b) � r$b for b # [0, 1].

7. Go to step 2.

FIG. 1. Pseudocode for algorithm Reset.
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incur a default mistake. If we currently occupy an unlabeled node of the incomplete
signature, then we label this node with the observed output symbol.

Our inductive assumptions imply that the signature 7$(q$) built up by this
process is in fact 7(.(q$)), the true signature of .(q$) in M$. This means that no
prediction mistakes occur while following a path in the incomplete signature 7$(q$).

Once a signature for some state q$ in Q$inc is completed, we ``promote'' the state
to Q$. We first remove q$ from Q$inc , and we then wish to assign q$ a new identity
in Q$ based on its signature. More precisely, suppose first that there exists a state
r$ # Q$ whose signature matches that of q$ (so that 7$(q$)=7$(r$)). Then, from the
foregoing comments, it must be that 7(.(q$))=7(.(r$)), which implies (by the
assumed uniqueness of signatures) that .(q$)=.(r$). We therefore wish to identify
q$ and r$ as equivalent states in M$ by updating our data structures appropriately.
Specifically, from our construction below, there must be some (unique) state s$ and
input symbol b for which {$(s$, b)=q$; we simply replace this assignment with
{$(s$, b)=r$ and discard state q$ entirely. Note that this preserves our inductive
assumptions on ..

Otherwise, it must be the case that the signature of every state in Q$ is different
from that of q$; similar to the argument above, this implies that .(q$) does not
occur in .(Q$) (the image of Q$ under .). We therefore wish to view q$ as a new
state of M$. We do so by adding q$ to Q$, and by setting #$(q$) to be the label of
the root node of 7$(q$). Finally, we create two new states r$0 and r$1 which we add
to Q$inc . These new states are the immediate successors of q$, so we set {$(q$, b)=r$b
for b # [0, 1]. Note that the incomplete signatures of r$0 and r$1 can be partially filled
in using 7$(q$); specifically, all of their internal nodes can be copied over using the
fact that the node reached in 7$(r$b) along some path x must have the same label
as the node reached in 7$(q$) along path bx (since r$b={$(q$, b)).

As before, it can be shown that these changes to our data structures preserve our
inductive assumptions on ..

We call the algorithm described above Algorithm Reset. The inductive arguments
made above on . imply the reliability of Reset:

Lemma 3. If every state in M has a unique d-signature, then Algorithm Reset
makes no prediction mistakes.

Lemma 4. The expected number of default mistakes made by Algorithm Reset is
O((n5�$2) log(n�$)).

Proof. We treat the completion of the start state's signature as a special case
since this is the only case in which the entire signature must be completed (recall
that in every other case, only the leaf nodes are initially empty). In order to simplify
the analysis for the start state, let us require that the learner label the nodes in
7$(q$0) level by level according to their distance from the root. The learner thus
waits until it is presented with all strings of length i before it starts labeling nodes
on level i+1. Clearly the expected number of default mistakes made by this method
is an upper bound on the number of default mistakes made in completing 7$(q$0).
We thus define, for every 0�i�d, a random variable Xi that represents the number
of default mistakes encountered during the labeling of nodes at level i.
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For each q$ (other than q$0) added to Q$inc , let Yq$ be a random variable that
represents the number of times that state q$ is reached in our simulation of M$ before
the signature of q$ is completed, that is, until every leaf node of 7$(q$) is visited.

The expected number of default mistakes made is then the sum of the expecta-
tions of the random variables defined above. Computing the expectation of each of
these variables in turn reduces to the so-called Coupon Collector's Problem [9]:
there are N types of coupons, and at each step we are given a uniformly chosen
coupon. What is the expected number of steps before we obtain at least one coupon
of each type? The answer to this is �N

i=1 (N�i) and a good upper bound is
N(ln N+1).

Thus, the expected number of default mistakes is

:
d

i=1

E[Xi]+:
q$

E[Yq$]� :
d

i=1

2i(ln 2i+1)+2n2d(ln 2d+1)

=O((n5�$2) } log(n�$)),

where the sum indexed by q$ represents a sum over all q$ (excluding q$0) ever added
to Q$inc . There are at most 2n such q$ since, by construction, each is of the form
{$(q$1 , b) for some q$1 # Q$ and b # [0, 1], and since |Q$|�n. K (Lemma 4)

Finally, the amount of computation done by Algorithm Reset in every trial is
clearly bounded by a polynomial in n and 1�$.

In Appendix B we show that Algorithm Reset, although derived in the Reset-
on-Default model, can be modified to learn finite automata in an average-case,
PAC-like model.

5. LEARNING WITHOUT A RESET

In this section, we consider the problem of learning in the No-Reset Model
described in Section 3.

The main result of this section is an algorithm for effectively learning uniformly
almost all automata in this model:

Theorem 5. There exists an algorithm that takes n and the confidence parameter
$ as input, is efficient, and in the No-Reset Model, for uniformly almost all n-state
automata the algorithm makes at most n2l prediction mistakes and an expected
number of default mistakes that is at most

O(n2l(l2l+1)(n5(2�$)2 log(2n�$))),

where

l=2 log(2n2�$)+
4 log2(2n2�$)

log(n)&log(log(2n2�$))&2

and where the expectation is taken over the choice of a random walk. In particular,
if $=n&c for some constant c, then the number of prediction mistakes and the
expected number of default mistakes is polynomial in n.
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Throughout this section, we assume that the target machine is strongly connected
(that is, every state is reachable from every other state). We make this assumption
without loss of generality since the machine will eventually fall into a strongly
connected component from which escape is impossible.

As in the last section, we begin with the relevant combinatorics, followed by
description and analysis of our algorithm.

5.1. Combinatorics

Learning is considerably more difficult in the absence of a reset. Intuitively, given
a reset, the learner can more easily relate the information it receives to the structure
of the unknown machine, since it knows that each random walk following a default
mistake begins again at a fixed start state. In contrast, without a reset, the learner
can easily ``get lost'' with no obvious means of reorienting itself.

In a related setting, Rivest and Schapire [20] introduced the idea of using a
homing sequence for learning finite automata in the absence of a reset. Informally,
a homing sequence is a sequence of input symbols that is guaranteed to ``orient'' the
learner; that is, by executing the homing sequence, the learner can determine where
it is in the automaton, and so can use it in lieu of a reset.

In our setting, the learner has no control over the inputs that are executed. Thus,
for a homing sequence to be useful, it must have a significant probability of being
executed on a random walk, that is, it must have length roughly O(log n). In
general, every machine has a homing sequence of length n2, and one might hope to
prove that uniformly almost all automata have ``short'' homing sequences. We have
been unable to prove this latter property, and it may well be false.

Instead, we introduce the related notion of a local homing sequence. This is a
sequence of inputs that is guaranteed to orient the learner, but only if the observed
output sequence matches a particular pattern. In contrast, an ordinary homing
sequence orients the learner after any possible output sequence.

More formally, a homing sequence is an input sequence h with the property that
q1(h)=q2(h) implies q1h=q2 h for all states q1 and q2 . Thus, by observing the
output sequence, one can determine the final state reached at the end of the
sequence. A local homing sequence for state q is an input sequence h for which
q(h) =q$(h) implies qh=q$h for all states q$. Thus, if the observed output
sequence is q(h) , then the final state reached at the end of the sequence must be qh;
however, if the output sequence is something different, then nothing is guaranteed
about the final state.

We will see that uniformly almost all automata have ``short'' local homing
sequences for every state. To prove this, we will find the following lemma to be
useful.

We say that an input sequence s is an r-exploration sequence for state q if at least
r distinct states are visited when s is executed from q. Note that this property has
nothing to do with the machine's labeling, but only with its architecture.

Lemma 6. Every strongly connected graph GM has an r-exploration sequence of
length at most r+r2�(log(n�r)&1) for each of its n states.
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Proof. Let q be a vertex of GM for which we wish to construct an r-exploration
sequence.

Suppose first that there exists a state q$ at distance at least r from q (where the
distance is the length of the shortest path from q to q$). Let s be the shortest path
from q to q$. Then all the states on the s-walk from q are distinct, and so the length-
r prefix of s is an r-exploration sequence. Thus, for the remainder of the proof, we
can assume without loss of generality that every state q$ is within distance r of q.

Suppose now that there exists a pair of states q$ and q" which are such that the
distance from q$ to q" has distance at least r. Then, similar to what was done before,
we let s be the shortest path from q to q$ (which we assumed has length at most r)
followed by the shortest path from q$ to q". Then the length-2r prefix of s is an
r-exploration sequence for q. Therefore, we can henceforth assume without loss of
generality that all pairs of states q$ and q" are within distance r of one another.

We construct a path s sequentially. Initially, s is the empty string. Let T denote
the set of states explored when s is executed from q; thus, initially, T=[q].

The construction repeatedly executes the following steps until |T |�r: Let T=
[t1 , t2 , ..., tk]. Then |T |=k<r (since we're not done). Our construction grows a
tree rooted at each ti representing the states reachable from ti . Each tree is grown
to maximal size maintaining the condition that no state appears twice in the forest
of k trees. Each node t in each tree has at most one child for each input symbol b;
if present, this b-child is that state which is reached from t by executing b. We add
such a b-child provided it has not appeared elsewhere in the forest. Nodes are
added to the forest in this manner until no more nodes can be added.

Since we assume GM is strongly connected, it is not hard to see that every state
will eventually be reached in this manner, that is, that the total number of nodes
in the forest is n. Since there are k<r trees, this means that some tree has at least
n�r nodes, and so must include a node at depth at least log(n�r)&1. In other words,
there is a path y from ti (the root of this tree) to some other state t of length at
least log(n�r)&1. So we append to the end of s the shortest path x from qs (the
state where we left off) to ti , followed by the path y from ti to t; that is, we replace
s with sxy.

Note that |x|�r since the machine has diameter at most r, so the length of s
increases by at most r+| y|. Moreover, by extending s, we have added at least
| y|�log(n�r)&1 states to T. This implies that the total number of times that we
repeat this procedure is at most r�(log(n�r)&1). Also, we have thus argued that the
difference between the length of s and |T | increases on each iteration by at most r.
Thus, the final length of s is at most r+r2�(log(n�r)&1). K (Lemma 6)

We are now ready to prove that uniformly almost all automata have short local
homing sequences.

Lemma 7. For uniformly almost all strongly connected automata, every state has
a local homing sequence of length r+r2�(log(n�r)&1) where r=2 log(n2�$).

Proof. Let GM be a strongly connected graph. Let q be a vertex of GM . By
Lemma 6, we know that there exists an r-exploration sequence s for q of length
r+r2�(log(n�r)&1).
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Let q$ be another vertex of GM . If qs{q$s then with probability at least 1&2&r�2,
we have that q(s) {q$(s). This follows from a similar argument to that used in
the proof of Theorem 2. Thus, the probability that s is not a local homing sequence
for q is at most n2&r�2.

Therefore, the probability that any state q does not have a local homing sequence
of the stated length is at most n2 2&r�2=$. K (Lemma 7)

Note, in particular, that if $=n&c where c is a positive constant then the length
bound given in Lemma 7 is O(log n).

5.2. Algorithm

In this section, we show that local homing sequences can be used to derive an
algorithm that efficiently learns almost all automata in the No-Reset Model.

Informally, suppose we are given a ``short'' local homing sequence h for some
``frequently'' visited state q, and suppose further that we know the output q(h)
produced by executing h from q. In this case, we can use the learning algorithm
Reset constructed in the previous section for the Reset-on-Default Model to con-
struct a learning algorithm for the No-Reset Model. The main idea is to simulate
Reset, but to use our knowledge about h in lieu of a reset. Recall that because h
is a local homing sequence for q, whenever we observe the execution of h with out-
put q(h) , we know that the automaton must have reached state qh. Thus, we can
use qh as the start state for our simulation of Reset, and we can simulate each reset
required by Reset by waiting for the execution of h with output q(h) . Note that
from our assumptions, we will not have to wait too long for this to happen since
we assumed that q is ``frequently'' visited, and since we also assumed that h is
``short'' (so that the probability that h is executed once we reach q is reasonably
large).

There are two problems with this strategy. The first problem is determining what
it means for a state to be ``frequently'' visited. This problem could be avoided if we
had a ``short'' local homing sequence hq for every state q, along with its associated
output sequence q(hq). In this case, we could simulate several separate copies of
algorithm Reset, each corresponding to one state of the machine. The copy corre-
sponding to state q has start state qhq and is ``activated'' when hq is executed with
output q(hq). Note that when this event is observed, the learner can conclude that
the machine has actually reached qhq , the start state for the corresponding copy of
Reset. Thus, to simulate a reset, we wait for one of the local homing sequences hq

to be executed with output q(hq). This resets us to one of the copies of Reset, so
we always make some progress on one of the copies. Also, regardless of our current
state q, we have a good chance of executing the current state's local homing
sequence hq .

The second obstacle is that we are not given a local homing sequence for any
state, nor its associated output sequence. However, if we assume that there exists
a short local homing sequence for every state, then we can try all possible
input�output sequences. As we will see, those that do not correspond to ``true'' local
homing sequences can be quickly eliminated.
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We will assume henceforth that the target automaton has the following properties:
(1) every state has a local homing sequence of length l=r+r2�(log(n�r)&1), where
r=2 log(2n2�$) and (2) every pair of inequivalent states have a distinguishing
string of length at most d=2 log(2n2�$). By Lemma 7 and Theorem 2, these
assumptions hold for uniformly almost all automata.

Our algorithm uses the ideas described above. Specifically, we create one copy
Ri, o of algorithm Reset for each input�output pair (i, o) where i # [0, 1]l and
o # [+, &]l+1.

We call a copy Ri, o good if i is a local homing sequence for some state q, and
if q(i)=o; all other copies are bad. We call a copy Ri, o live if it has not yet been
identified as a bad copy. Initially all copies are live, but a copy is killed if we deter-
mine that it is bad.

Here is a description of our algorithm, which we call No-Reset.
Repeat forever:

1. Observe a random input sequence i of length l producing output sequence o.
If Ri, o is dead, repeat this step. Predict ``?'' throughout the execution of this step.

2. Execute the next step of the reset algorithm for Ri, o . More precisely:
simulate the copy Ri, o of the Reset-on-Default algorithm relying on Ri, o's predic-
tions until Ri, o hits the reset button or until it makes a prediction mistake.

3. If Ri, o makes a prediction mistake, or if the number of signatures (that is,
states) of Ri, o exceeds n, then kill copy Ri, o .

Note that if Ri, o is good then it will never be killed because every simulation
of this algorithm truly begins in the same state, and therefore Ri, o will make
no prediction mistakes and will not create more than n states (as proved in
Section 4.2).

Lemma 8. Algorithm No-Reset makes at most n2l prediction mistakes.

Proof. If Ri, o makes a prediction mistake at step 2, then it is immediately killed
at step 3. Thus each copy Ri, o makes at most one prediction mistake.

Although there are 22l+1 copies R i, o , at most n2 l will ever be activated. This
follows from the observation that for every input sequence there are at most n out-
put sequences, one for every state in the automaton. Thus at most n2l input�output
pairs (i, o) will ever be observed. K (Lemma 8)

Let mR be the expected number of default mistakes made by the reset algorithm
of Section 4.2. The following lemmas prove that algorithm No-Reset expects to
incur n2l(l2l+1) mR default mistakes.

Lemma 9. On each iteration, the expected number of default mistakes incurred at
step 1 is at most l2l.

Proof. Let q be the current state. By assumption, q has a local homing sequence
hq of length l. Since Rhq , q(hq) is good, it must be live. Therefore, the probability
that a live copy is reached is at least the probability of executing hq , which is at
least 2&l.
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Thus, we expect step 1 to be repeated at most 2l times. Since each repetition
causes l default mistakes, this proves the lemma. K (Lemma 9)

Thus for every default mistake of algorithm Reset we incur l2l additional default
mistakes in our new algorithm. The following lemma can now be proved.

Lemma 10. The total number of default mistakes made by the algorithm is at
most n2l(l2l+1) mR .

Proof. Note first that we expect that each copy Ri, o makes at most mR default
mistakes, even if Ri, o is bad. This follows essentially from the proof of Lemma 4,
combined with the fact that the number of signatures of each copy is bounded by
n (copies that exceed this bound are killed at Step 3).

As noted in the proof of Lemma 8, there are n2l copies of the algorithm that are
ever activated. We expect each of these to make at most mR mistakes, so we expect
the outer loop of the algorithm to iterate at most n2lmR times. Combined with
Lemma 9, this gives the stated bound on the expected number of default mis-
takes. K (Lemma 10)

6. EXTENSIONS

6.1. Replacing Randomness with Semi-Randomness

Our results so far have assumed the uniform distribution in two different con-
texts. The label of each state of the automaton graph and each bit of the random
walk observed by the learner were both assumed to be the outcome of independent
and unbiased coin flips. While entirely removing this randomness in either place
and replacing it with worst-case models would invalidate our results, the perfor-
mance of our algorithms degrades gracefully if the state labels and walk bits are not
truly random.

More precisely, suppose we think of the random bits for the state labels and the
random walk as being obtained from a bit generator G. Then our algorithms still
work even in the case where G does not generate independent, unbiased bits but is
instead a semi-random source as defined by Santha and Vazirani [24]. Briefly, a
semi-random source in our context is an omniscient adversary with complete
knowledge of the current state of our algorithm and complete memory of all bits
previously generated. Based on this information, the adversary is then allowed to
choose the bias of the next output bit to be any real number \ in the range
[2, 1&2] for a fixed constant 0<2�1�2. The next output bit is then generated
by flipping a coin of bias \. Thus, a semi-random source guarantees only a rather
weak form of independence among its output bits.

Semi-randomness was introduced by Santha and Vazirani and subsequently
investigated by several researchers [6, 24, 27, 28] for its abstract properties as a
computational resource and its relationship to true randomness. However, we are
not the first authors to use semi-randomness to investigate models between the
worst case and the average (random) case. Blum [5] studied the complexity of
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coloring semi-random graphs, and Azar et al. have considered semi-random sources
to model biased random walks on graphs [3].

Now assume that the adversary can choose the label of each state in GM by flip-
ping a coin whose bias is chosen by the adversary from the range [21 , 1&21].
A simple alteration of Theorem 1 (details omitted) gives that the probability that
two inequivalent states are not distinguished by their signature is at most
(1&21)(d+1)�2 (instead of 2&(d+1)�2, which held for the uniform distribution). This
implies that in order to achieve the same confidence, it suffices to increase the depth
of the signature by a factor of &1�log(1&21).

The relaxation of our assumption on the randomness of the observed input
sequence is similar. Assume that the next step of the walk observed by the learner
is also generated by an adversarially biased coin flip in the range [22 , 1&22]. In
algorithm Reset the expected number of default mistakes required to complete a
partial signature is higher than in the uniform case. As the probability of a sequence
of length d can decrease from (1�2)d to 2d

2 , the expected number of default mistakes
per signature increases from O(d2d) to at most O(d(1�22)d).

These alterations imply that the expected number of default mistakes made by
Reset increases from

O((n5�$2) } log(n�$))

to

O(n(n2�$)(2 log(1�22)�log(1&21)) log(n�$)).

The deviations from uniformity increase the degree of the polynomial dependence
on n and 1�$. Notice that the sensitivity to nonuniformity in the labeling process is
stronger than the sensitivity to nonuniformity in the random walks.

Similar implications follow for No-Reset. The length of the local homing sequences
l has to be increased from l to l $=l log(1&21)&2 which increases the number of
prediction mistakes from n2l to n2l $ and the expected number of default mistakes
from n2l(l2l+1) mR to n2l $(l $2&l $

2 +1) m$R .

6.2. Learning Distributions on Strings

An interesting extension of our results is to a model where automata are used to
represent distributions over binary strings such as those discussed by Feder et al.
[8], rather than as acceptors of languages. In this model no binary labels are
associated with the states Q. Instead, there is a real-valued function .: Q � [0, 1].
The underlying state graph (defined by the transition function {) together with .
defines a probabilistic generator of binary strings in the following manner: we now
think of the bits on the edges of the machine as the output bits. Starting in the
initial state, if at any point we have traversed the path of i edges labeled b1 } } } bi

and are currently in state q, the next bit of the path is determined by flipping a coin
of bias .(q). We then move to the indicated state and continue. The machine thus
generates a distribution over finite binary strings of any fixed length: the probability
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of a binary sequence _ is the product of the values of . at the nodes on the path
defined by _.

A common and natural learning goal in this context is to learn to correctly predict
approximately the probability of a binary string approximately predict the probabil-
ity of a binary string after observing a sample of strings from the distribution. In
general, this problem is shown to be as hard as the problem of learning parity with
noise in [13], which is related to a longstanding open problem in coding theory.

However, there is a simple variant of Reset that can perform an online version
of this task efficiently with high probability if the function . is chosen according to
some natural classes of distributions. As usual, the structure of the automaton as
defined by { is unrestricted (worst-case).

The algorithm of Ron et al. [23] which learns acyclic probabilistic finite
automata builds on the algorithm given here. Their algorithm has been successfully
applied to the problem of handwriting recognition and to construct multiple-
pronunciation models for spoken words.

We define two parameters 0<2, +<1�2 and associate with each state q # Q some
distribution Pq over the interval [2, 1&2]. We assume that the value of .(q) is
chosen independently for each state q according to Pq . The only requirement we
make on the distributions Pq is that if q1 and q2 are two different states in the
automaton, then the probability that |.(q1)&.(q2)|�+ is at least 1�2, and that
otherwise .(q1)=.(q2). More generally, we can require that the probability that
|.(q1)&.(q2)|<+ be at most 1�2, but for sake of the exposition we consider this
simpler case. This requirement is analogous to the random [+, &] labeling of the
states in the case of typical DFA. A simple legal example for 2=1�4, +=1�8
is when all Pq are equal to the uniform distribution over [i�8: 2�i�6]. (If
|.(q1)&.(q2)| is allowed to be small, but non-zero, then a legal example for
2=1�4, +=1�8 is when all Pq are equal to the uniform distribution over
[1�4, 3�4].)

In this context we say that a string x # [0, 1]* is a distinguishing sequence for q1

and q2 , if there exists a prefix x$ of x, such that |.({(q1 , x$))&.({(q2 , x$))|�+.
It is easily verified that the proof of Theorem 2 also yields that for uniformly
almost all distribution generating automata, every pair of inequivalent states have
a distinguishing string of length at most 2 log(n2�$).

For the task of learning an unknown distribution in this setting, we use a slightly
modified version of Reset:

1. Instead of collecting the labels of each node in the d-tree, it waits until each
node is visited at least m times, and counts the number of times the symbol 1 each
of the two input symbols is observed when the node is visited.

2. After all nodes in a d-tree have been visited m times, the signature tree is
calculated. The signature tree associates with each node in the d-tree the empirical
estimate of the value of . that is associated with the node: that is, .̂ is the number
of times a 1 has been observed in the node divided by the total number of visits to
the node. It then compares the signature tree to all previously collected signature
trees. Two trees are identified if for every corresponding pair of nodes v and v$ we
have |.̂(v)&.̂(v$)|�+�2.
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3. At each step, the learner must predict an approximation to the value of
.(q), where q is the current state that the learner is at. It does so using the
estimates .̂( } ) unless it is at a node which has been visited less than m times in
which case it outputs ``?'' (and makes a default mistake). If the learner predicts a
value that is more than +�2 away from the correct value, then it is considered to
be a prediction mistake. (note that the learner will not immediately know may not
know that it has made a prediction mistake, but we show that with high probability
it is very unlikely that our algorithm does not make any prediction mistakes).

Assume for a moment that the estimates of the values of . were completely
accurate. In such a case, as was observed above, for every pair of inequivalent
states, there exists at least one node in their respective signature trees which will
have a significantly different . value, and hence their signature trees will not be
identified. Thus the analysis of this case essentially reduces to the analysis of
learning typical DFA. Since .(q) # [2, 1&2] also determines the bias for the
choice of the next state, we can apply the result stated in the previous subsection
and get that the expected number of default mistakes made by the algorithm is

O(m } n(n2�$)2 log(1�2) log(n�$)),

where m (the number of times each node is visited before the signature is complete)
is set below.

As the estimates of . are not exact, there might be mistakes in identifying
signatures. However, using Chernoff bounds it is easy to show that the probability
that the estimate differs from the true value by a multiplicative constant decreases
exponentially with m. In particular, it suffices that m=3(log(1�$$)�+) so that this
event will not occur for a particular node with probability at least 1&$$ for any choice
of confidence parameter $$. Since the number of nodes in all possible signature trees
constructed is at most 2n } 2d+1, we should choose m=3(d log(n�$$)�+) in order to
ensure that with probability at least 1&$$, this event never occurs. As long as this
event does not occur, the algorithm does not make any prediction mistakes and we
get that the expected number of default mistakes is

O((1�+) } n(n2�$)2 log(1�2) } log2(n�$) } log(n�$$)).

Note that the algorithm can be slightly modified so that the accuracy of the algo-
rithm's predictions improves as the number of trials increases. All that is needed is
to keep updating the .̂( } ) values associated with states whose signatures have been
completed.

APPENDIX A

Technical Appendix: Proof of Theorem 2

Theorem 2. For uniformly almost all automata, every pair of inequivalent states
have a distinguishing string of length at most 2 log(n2�$). Thus for d�2 log(n2�$),
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uniformly almost all automata have the property that the d-signature of every state
is unique.

Theorem 2 will be proved via a series of lemmas. The graph GM is fixed
throughout the proof. In the lemmas we prove that for any labeling of GM , if two
states in the automaton are inequivalent, then either their d-signatures are different
or at least one of the d-trees includes many different states. Using this fact we shall
later prove that for most of the labelings of GM the d-signatures of the two states
are different. As the lemmas are proven for any labeling, let us fix any automaton
M for the duration of the lemmas.

We begin by giving a lemma saying that the shortest distinguishing string passes
through many states on walks from q1 and q2 . Our eventual goal is to find a much
shorter string with this property.

Lemma 11. Let q1 and q2 be inequivalent states of M, and let x # [0, 1]* be a
shortest distinguishing string for q1 and q2 . Let T1 and T2 be the sets of states of M
passed through on taking an x-walk from q1 and q2 respectively. Then |T1 _ T2 |�
|x|+2.

Proof. Let R be a set of states in M, and let y be a string over [0, 1]. We define
the partition of R induced by y to be the partition of the states in R according to
their behavior on the string y. More precisely, two states r1 , r2 # R belong to the
same block of the partition if and only if r1( y) =r2( y).

Let xi # [0, 1] denote the i th bit of x, and let l=|x|. For 1�i�l+1, let yi be
the string xi xi+1 } } } xl .

We claim that for every 1�i�l, the partition of T1 _ T2 induced by yi is a strict
refinement of the partition induced by yi+1 . Suppose to the contrary that there
exists an index 1� j�l for which the partition of T1 _ T2 induced by yj is the same
as that induced by yj+1. Let r1=q1x ( j&1) and r2=q2x ( j&1) (recall that x(i) denotes
the length i prefix of x). Since we assume that x distinguishes q1 and q2 , we have
that r1( yj){r2( yj) , and so r1 and r2 must already be in different classes according
to the partition induced by yj+1 . Therefore q1(x ( j&1)yj+1){q2(x( j&1)yj+1) and
so x( j&1)yj+1 is a shorter distinguishing string for q1 and q2 , contradicting our
assumption on x.

Now since the number of classes in the partition induced by Xl+1 (the set [*])
is two, the number of classes in the partition induced by X1 is at least l+2. On the
other hand, the size of the partition of T1 _ T2 induced by any set of strings is at
most |T1 _ T2 |, and hence l+2�|T1 _ T2 | as desired. K (Lemma 11)

Lemma 11 can be thought of as a statement about the density of unique states
encountered by taking the x-walk from q1 or q2 : either along the x-walk from q1

or along the x-walk from q2 , we must pass through at least ( |x|+2)�2 different
states. What we would like to develop now is a similar but stronger statement
holding for any prefix x$ of x, in which we claim that along the x$-walk from either
q1 or q2 we must encounter 3( |x$| ) different states.

In order to do this we first present the following construction. Let x$ be a proper
prefix of the shortest distinguishing string x for q1 and q2 , and let y # [0, 1]*
be such that x=x$y (note that | y|�1). Let z be a new defined symbol which
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is neither 0 nor 1. The symbol z will act as a kind of ``alias'' for the string y. We
construct a new automaton M y=(Q y, { y, # y, q y

0 ) over the input alphabet [0, 1, z].
The start state in this automaton is the start state of M, so q y

0 =q0 . We set Q y=
Q _ [q+ , q&] where q+ and q& are new special states, and # y extends # with
# y(q&)= & and # y(q+)=+. All the transitions in M y from states in Q on input
symbols from [0, 1] remain the same as in M, and the z transitions are defined as
follows: for q # Q, { y(q, z)=q+ if #(qy)=+, and { y(q, z)=q& otherwise. Thus, the
special input symbol z from any state in M y results in the same final label as the
input string y from the corresponding state in M. For q # [q+ , q&], { y(q, b)=q&

for any b # [0, 1, z].

Lemma 12. x$z is a shortest distinguishing string for q1 and q2 in M y.

Proof. Clearly, x$z distinguishes q1 and q2 in M y.

Suppose t is a shortest distinguishing string for q1 and q2 that is shorter than x$z.
We claim that z cannot appear in the middle of t. Suppose to the contrary that
t=t$zt" where z does not appear in t$ and |t"|�1. By construction, every z transi-
tion takes the machine into either q+ or q&. Therefore, because t is a shortest
distinguishing string, it must be that q1 t$z=q2 t$z. Thus, q1 t$zt"=q2 t$zt", and so
t$zt" cannot be a shortest distinguishing string.

If t is of the form t$z, then t$y is a shorter distinguishing string than x=x$y for
q1 and q2 in M which contradicts our assumption on x. If z does not appear at all
in t, then since | y|�|z|, t itself is a shorter distinguishing string than x in M, again
contradicting our assumption. K (Lemma 12)

We are now prepared to generalize Lemma 11.

Lemma 13. Let x$ be the length l $ prefix of x for l $<l. Let T $1�T1 and T $2�T2

be the sets of states in M passed upon executing x$ starting from q1 and q2 respec-
tively. Then |T $1 _ T $2 |�l $+1.

Proof. According to Lemma 12, x$z is a shortest distinguishing string for q1 and
q2 in M y. The set of states passed upon executing x$z starting from q1 is T $1 _ [q+],
and those passed starting from q2 is T $2 _ [q&]. Applying Lemma 11, we get that
|T $1 _ T $2 |+2�|x$z|+2=l $+3 and hence |T $1 _ T $2 |�l $+1. K (Lemma 13)

We now move to combine these statements that hold for all labelings of GM to
a proof of the statement about most of the labelings of GM .

Proof of Theorem 2. Let GM be an underlying automaton graph, and let q1 and
q2 be two distinct states in GM . Let M be the random variable representing the
machine obtained from GM by assigning random labels to every state. For fixed d,
we first wish to bound the probability (over the random choice of M ) that q1 and
q2 are inequivalent but indistinguishable by any string of length d.

Suppose first that for every labeling of GM , states q1 and q2 are either equivalent,
or they can be distinguished by a string of length at most d. Then this will certainly
be the case for a random labeling of GM , and therefore, in this case, the probability
that q1 and q2 are inequivalent in M but indistinguishable by any string of length
d is zero.
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Otherwise, there exists some labeling of GM which yields a machine M0 with respect
to which q1 and q2 are inequivalent but whose shortest distinguishing string x has
length l greater than d. Let us consider the x(d )-walks from q1 and q2 in M0 , or equiv-
alently, in the unlabeled graph GM . Define the d+1 state pairs (ri

1 , ri
2) of GM by

(ri
1 , ri

2)=(q1 x(i), q2x (i)) for 0�i�d. Since x was a distinguishing string in M, ri
1{ri

2

for all i. Furthermore, Lemma 13 tells us that at least d+1 unique states appear in
these state pairs. Consider the following process for randomly and independently
labeling the states of GM appearing in the state pairs: initially all states are unlabeled.
At each step, we choose a state pair (ri

1 , ri
2) in which one or both states are still

unlabeled and choose a random label for the unlabeled state(s). Note that with prob-
ability 1�2, on the current step x(d ) becomes a distinguishing string for q1 and q2 in the
automaton under construction. Now after k steps of this process, at most 2k states can
be labeled. As long as 2k<d+1 there must still remain a pair with both states
unlabeled. This method yields at least (d+1)�2 independent trials, each of which has
probability 1�2 of making x(d ) a distinguishing string for q1 and q2 . Thus the probabil-
ity that x(d ) fails to be a distinguishing string for q1 and q2 in M is at most 2&(d+1)�2.

For any fixed pair of states q1 and q2 of GM , the probability that q1 and q2 are
inequivalent in M but indistinguishable by strings of length d is at most 2&(d+1)�2.
Thus the probability of this occurring for any pair of states in M is bounded by
n2 } 2&(d+1)�2. If d�2 log(n2�$) this probability is smaller than $. K (Theorem 2)

APPENDIX B

Learning Typical Automata in the PAC Model

In this appendix we show how algorithm Reset although derived in the Reset-on-
Default model, can be modified to learn finite automata in an average-case, PAC-
like model. Specifically, such a model assumes that each example is a random input
sequence along with the output sequence that results from executing the input
sequence on the target machine.1 Each input sequence is generated by the following
process: first, the length l of the sequence is chosen according to an arbitrary dis-
tribution; then an input sequence is chosen uniformly at random from [0, 1]l. The
goal is to learn to predict well the output sequences given a random input sequence.

Definition 5. Let M=(Q, {, #, q0) be the target automaton, let D: N � [0, 1]
be an arbitrary distribution over the lengths of the input sequences, and let
DU : [0, 1]* � [0, 1] be the distribution on sequences defined by choosing a length
l according to D, and then choosing a sequence of length l uniformly. We say that
M$=(Q$, {$, #$, q$0) is an =-good hypothesis with respect to M and DU if

PrDU
[q0(x){q$0(x)]�=.

Theorem 14. There exists an algorithm that takes n, the confidence parameter $,
an approximation parameter =, and an additional confidence parameter $PAC as input,
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File: DISTIL 264824 . By:DS . Date:06:10:97 . Time:08:44 LOP8M. V8.0. Page 01:01
Codes: 3801 Signs: 3206 . Length: 52 pic 10 pts, 222 mm

such that for uniformly almost all n-state automata, and for every distribution D on
the length of the examples, with probability at least 1&$PAC , after seeing a sample
of size polynomial in n, 1�$, 1�=, and 1�$PAC , and after time polynomial in the same
parameters and the length of the longest sample sequence, the algorithm outputs a
hypothesis M$ which is an =-good hypothesis with respect to M and DU .

Note that in the theorem above we have two sources of failure probabilities. The
first stems from the random choice of the target automaton M, where we allow
failure probability $, and the second emanates from the random choice of the sample,
where we allow failure probability $PAC .

Proof. The PAC learning algorithm uses Reset as a subroutine in the following
straightforward manner. For every given sample sequence it simulates Reset on the
random walk corresponding to this sequence until either Reset performs a default
mistake or the walk ends. It continues in this manner, allowing Reset to build its
hypothesis M$, until either Reset has a complete hypothesis automaton (i.e., Qinc is
empty and {$ is completely defined), or, for (1�=) log(2�$PAC) consecutive sample
sequences, Reset has not made any default mistake (and has not changed its
hypothesis as well). This process can be viewed as testing the hypotheses constructed
by Reset until one succeeds in predicting correctly the output sequences of a large
enough number of randomly chosen sample sequences. In the former case we have
a hypothesis automaton M$ which is equivalent to M. In the latter case, we can
extend {$ wherever it is undefined in an arbitrary manner and output the resulting
M$. Since M$ was consistent with M on a random sample of size (1�=) log(2�$PAC),
with probability at least 1&$PAC �2, it is an =-good hypothesis with respect to M.
It remains to show that with probability at least 1&$PAC �2, the sample size needed
to ensure that this event occurs, is polynomial in the relevant parameters.

From Theorem 1 we know that for uniformly almost all n-state automata, the
expected number of default mistakes made by Reset in the Reset-on-Default model
is O((n5�$2) log(n�$)). In the PAC-like model considered here the algorithm receives
a series of sequences, and hence, differently from the Reset-on-Default model, the
target DFA is effectively reset at the end of each sample sequence even if Reset did
not make a default mistake. However, it is easily verified that the analysis in
Lemma 4 can be directly adapted to yield the same upper bound on the expected
number of default mistakes made in the PAC-like model. By Markov's inequality
we have that with probability at least 1&$PAC �2, the total number of default mis-
takes Reset makes (on an infinite sample) is O((n5�($2 } $PAC) log(n�$)). Therefore,
with probability at least 1&$PAC �2, after seeing O((1�=) log(2�$PAC) } (n5�($2 } $PAC)
log(n�$)) sample sequences, there must be (1�=) log(2�$PAC) consecutive sample
sequences on which Reset has not made a single default mistake.
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